- TECHNICAL INFORMATION -

21.0	TECHNICAL INFORMATION

The information in this section is provided for any user interested in making modifications to the C-NET program, or just to better understand how it all operates.

21.1	PROGRAMMING TIPS

Here are some tips for ‘safe’ C-NET modification and application programming:

1)	Before you begin, define your variables on paper, their purpose, and check with 	the BASIC variables chapter to insure the safety of their use.

2)	Memory is not an infinite resource, especially on the 128. As a general rule, the 	size (in blocks) of the CN file added to the size of your largest program file, plus 	84 should not exceed 245. Unexplained ‘hangs’ will occur if this rule is not 	adhered to!

3)	Attempt to avoid infinite loops. Specifically, this means you should somehow 	account for the chance that the user will simply ‘hang up’ during a GOSUB2100 	(input) or GOSUB2200 (get one character), C-NET immediately returns control 	to BASIC, with an effective input of null (“ “), or chr$ (1 (RETURN)) for 	GOSUB2200. If your routine loops around waiting for the user to enter either ‘Y’ 	or ‘N’, for example, the program will loop without escape. If you must have an 	input (RETURN isn’t enough) for a default of something, giving AUTOMATIC 	fall-through for user-hang-ups, you must then insert a check for a carrier. This is 	done as follows:

	10 GOSUB2100: IF TR%=0 THEN 30

	20 IF AN$ <> “Y” AND AN$ <> “N” THEN PRINT “TRY AGAIN”:GOTO 10

	30

Actually, if you FORGET this protection, C-NET will automatically break out of the infinite loop after seven iterations. This, however, results in a “can’t continue” error to be logged by C-NET. The error line number will ALWAYS be 2102 or 2202. Therefore, from the log alone, it is not possible to determine exactly where the infinite loop occurs in the program.

21.2	MEMORY MAP

This is how memory is utilized in the Commodore 128 version of C-NET:

RAM BANK 0

$0000 - $03FF		C-128 usage

$0400 - $04EF	C-NET ‘m4.0’ file

$04F0 - $05E9	C-NET Editor Paragraph Markers

$05EA - $05EE	UNUSED?

$05EF - $06E9	C-NET Editor Direct-Color Entry Codes

$06EA - $06EE	UNUSED?

$06EF - $07FF	C-NET usage

$0800 - $09FF		BASIC usage

$0A00 - $0AFF	C-128 usage, however, in practice it has been observed that $0A60 				- $0AFF may never be changed during normal C-NET operation. 				Free for modification use?

$0B00 - $0B3F	C-NET variables usage, maybe some free location scattered 					throughout here!

$0B40 - $0B9F	C-NET Editor temp string work area

$0BA0 - $0BFF	C-NET Editor current line color codes

$0C00 - $0DFF	C-NET RS-232 I/O Buffers

$0E00 - $0FFF	C-NET ‘m2’ file

$1000 - $10FF		Function Key Information

$1100 - $12FF		Graphics/Music Area. Since these features of the 128 are unused 				while running C-NET, it is possible to use this memory for your 				own purposes. With the exception possible of $1100-$1130, and 				$1200-$1221 which may also be used by DOS.

$1300 - $1BAF	C-NET ‘m3’ and its future expansion

$1BB0 - $1BFF	C-NET Printer output buffer (80 bytes)

$1C00 - $37FF	C-NET ‘ml’

$3800 - $53FF		C-NET ‘proto’ files

$5400 - $F4FF	C-NET ‘cn’ file, and one ‘p-file’

$F500 - $FDDF	C-NET ‘uds.o’ or ‘subs.o’

$FDE0 - $FFFF	C-128 usage

RAM BANK 1

$0000 - $03FF		Always the same as Bank 0

$0400 - $0BF0	C-NET ‘sys.pointers’ file

$OBF1 - $0FFF	C-NET relative file directories (del.email, and the first part of 				subboard header files.......)

$1000 - $57FF		C-NET subboards and U/D header file

$5800 - $FEFF	Normal BASIC Variable Usage

$FF00 - $FFFF	C-128 Usage

21.3	PEEK AND POKES COMMANDS

Here’s how some of that memory is used by C-NET, through BASIC by the use of PEEK and POKE commands. For example, POKE 231, 11%-1 will set the right border of the output window to the user’s line length setting (less 1, because screen measurements include 0), and PEEK(7518) can be used to see whether the checkmark is set next to the on-line function “U/D” etc

Memory address	Usage

47,8			Pointer, start of BASIC variable

51,2			Pointer, end of BASIC arrays +1

125,6			End of BASIC stack (reset during error trap)

135,7			# of bytes transferred upload/download, also used to count position

			in SEQ when reading it from RAMEX

138,42			Other protocol counters

141			Status word for Kernel I/O

174,5			Pointer; program end (of last load)

198,9			Bank # for load/save, and filename

208			Index to keyboard buffer queue

229			Upper border of window

231			Right border of window (user line length)

236			Current cursor position, column

254			Communication location for several ML routines

512			After upload/download, =1=aborted

991			Overflow marker of FAC1 (reset at error trap)

1036			Is status window on? 19=yes, >19=no.

1264			Editor’s paragraph markers (250 bytes) 1=CR pressed

1280			Used by Punter during file transfer

1304		This too, probably the ‘block length’

1309,10	Punter stuff again

1775			Storage for 56577 location (to put modem on-line)

1776			Storage for LD$ (so ML can compare date) (11 bytes)

1787			Modem type (1=1650, 2=Hayes, etc.)

1788			Minutes on-line this call

1789			# of files in the RAM expander

1790			Connect baud rate - 3, 12, 24, 96=local mode

2584,5			RS-232 index to the start/end of the input buffer

2816			User’s minute per call

2817			User’s call per day

2818			User’s allowed minutes at idle before logoff

2819			User’s allowed number of files to download

2820			User’s allowed number of files to upload

2821			User’s upload/download ratio

2822			User’s allowed public messages per call

2823			User’s allowed minutes in the p-files/day

2824			User’s allowed feedbacks (by access group)

2825			User’s allowed editor lines (by access group)

2826			Number of feedbacks user has left so far this call

2827			Number of minutes user has spent in p-files this call

2828			Number of files uploaded this call

2829			Number of files downloaded this call

2832			Wait for call rate - 3, 12, 24

2833			Hour for amaint (military)

3598,9			Vars, last 51, 52 values

7168			More? mode, 0=no

7169			Current # of lines printed since last More? or input

7170			Flag: N was pressed at the More? prompt

7261,2			Baud rate constant for ML, 7262=1=2400 baud

7263,4			Starting address for p-files

7265,6			Starting address for proto file loads

7267			0 or 16, carrier detect ‘inverting’ register

7268			Local mode, 1=yes

7269			Color/graphics mode, 1=yes

7271			Chat ‘page’ flag, 1=on

7273			Time still remaining on-line (same as tr%)

7276			For input, maximum # of characters to accept

7278			For input, return code, signal chat mode

7284			Length of ML a$ in storage (7286)

7286			84 bytes storage for ML’s copy of a$

7376			Length of ML an$ in storage

7377			84 bytes for ML an$ (used for inputs, etc.)

7462			User’s number of screen rows

7465			Flag: file is being read from memory, not disk

7507			User’s time zone. Signed, $ff=-1, etc.

7511	10 bytes flags for the ‘on-line functions menu’... 7511=Sysop is in, 7516=New Users Disabled, 7517=Print is on, 7518=UD disabled, 7519, 7520=U1 and U2.

7523			DoMCI flag ... 0=Print MCI, 1=Input MCI, 1 or the other!

7524			Cursor color ($lf selects flashing white), this register MAY no 				longer be used in 4.0 or 5.0!

7525			For MCI: print mode

7526			For MCI: cmp flag (=1 if last /t1 worked)

7527			For MCI: printer is on flag.

7528			For MCI: last command.

7529			For MCI: last command’s argument.

7531			Internal flag, print TAB spaces.

7533			Wordwrap flag, return immediately from line input?

7543			The current 6 digit date (in BCD), so 01 12 03 89 12 42 is Sun 3-				Dec-1989, 12:42 a.m.

7555			Terminal buffer, flag =1=open.

7558			Current date in 11 digit format

7596			Flag, user has sysop access (for the MCI Test during file reads..)

7604			Flag, linefeeds 1=Yes.

7608			Flag, ANSI mode 1=Yes.

7612			Flag, file abortion has been disabled (using /al).

7616			Default RGB coding for the default color.

7620			Default color (0 to 15)

7632			Password mask ($2e normally “.”) ... here it is! Poke this with an 				ASCII character value to change the password mask character!!

7687			Scrtbl, 256 bytes for screen output translation.

7943			Tratbl, 256 bytes for Commodore to ASCII translation.

8199			Rectbl, 128 bytes for ASCII to Commodore translation.

8410,1			Upload block counter (signed, $ff=-1), and flag for change, after 				you do ‘on-line credits changing’.

14339			For editor, number of lines maximum.

14340			For editor, number of lines maximum-1.

14341			For editor, right column.

14342			For editor, access flags (Sysop, MCI, etc.).

14343			For editor, device for reading sys.menu 3.

14345,6		For editor, pointer to base of TT$(1) array.

14347			For editor, number of lines coming out, going in.

56328,31		System clock, may be read to figure time for downloads, etc.

56577			Data port (RS-232) for testing carrier, DTR hang-ups.

56579			Data Port (RS-232), set which bits input/output.

62720			Start location of the ‘subs.o’ and ‘uds.o’ files, used to see if one’s 				already loaded.

21.4	BASIC SYS COMMANDS

This chapter details each of the BASIC SYS commands found throughout C-NET. For example, SYS4894 will cause the Chat Whistle to ring. Headers are also provided to show the files in which the various routines are located. Where appropriate, the input and output of the routines area is also noted.

SYS #		DESCRIPTION			FUNCTION				

0							The BASIC variable “0” should be

							permanently set at the value 7171, to

							output the contents of the variable a$

							to the screen and modem (GOSUB40

							also).

		NOTES:	input: lp=1 ... Carriage Return after output.

					mw=1 .. Allow abort anywhere in input.

				output: rc=1 ... SPACEBAR was pressed.

					sh=47 .. / key was pressed.

-- m4.0 --

1024		Savescreen				Go to 24 line screen

1027		Restorescreen				Go back to 19 line screen

1030		Savecursor				Save current cursor position. v4.0

							uses the BASIC cursor to draw

							everything. so must keep track of

							where it goes back after writing in 								the status window, etc.

1033		Restorecursor				Restore last saved cursor position.

-- m2 --

3584		Directory				Disk directory, after open 2,8,0,”$”

3590		Putvars				Marks which variables are currently

							in memory so that next Flush (4919)

							can wipe out any new ones.

-- m3 --

4864		Alphafind				Find the pointer position of a given 								ID within the sys.pointers.

							input: p1%=id to location

							output: p2%=the pointer to match 								the ID.

4867		Alphainsert				Move the pointer file up one position 							to make room for a new pointer.

							input: p2%=the pointer position.

4870		Alphadelete				Remove the pointer at a given 								position, move others down to fill 								the gap.

							input: p2%=the pointer position.

4873		Alpharead				Obtain the ID number associated 								with a pointer.

							input: p1%=the pointer to look up

							output: p2%=the counter number.

4876		Alphaput				To place an ID number at a 									particular pointer location.

							input: p1%= the ID number

							output: p2%=the pointer at which to 								put it.

4879		Getrecord				Read 23 bytes from file 2 into a$, 								regardless of the character codes, 								even CR (reads packed data in the 								user files).

4882		Copy					Used in the maintenance sections to 								copy from one file stream to another.

Check

4888		Alterdt

4891		Clearstack				Used during the error trap to remove 							GOSUBS and FOR/NEXTs from the 							BASIC stack.

4894		Ringsysop				The Chat Whistle!

4897		Directoryfile				Read the next file on the directory 								list. Used with selections of which 								files to copy/dload.

4906		300BAUD				Set baud rate 300.

4909		1200BAUD				Set baud rate 1200.

4912		2400BAUD				Set baud rate 2400.

4916		Startup					Used to load ‘prg.ram’ at program 								start.

4919		Flush					Remove all added variables since 								3590.

4922		L80					RAM expander, load SEQ to bank 1.

4925		L81					RAM expander, reset this to bank 0.

4928		Putc0					Move what’s at c0 real memory to 								d0.

4931		Putd0					Move what’s at d0 real memory to 								c0.

4936	Screenbeep	Flash the screen. Those of you who don’t like this, maybe inserting an RTS ($60) at the appropriate place here will appease! (Then re-save the file).

4939	SwiftInit	Initialize Swiftlink and Wedge NMI Handler.

-- ml --

7171		Output					Print a$ to screen.

7174		ResetMCI				Return all MCI things back to 								default (in most cases off).

7177		Put1					Output the single character ASCII 								found at location 254.

7180		DoSecs

7183		Onechar				Wait for 1 character to be pressed, 								don’t print anything to the screen, 								used with gosub2200.

7186		Input					Wait for a line to be entered. Used 								with line 2100 routine.

							inputs: at 7276, the # of chars to 								enter.

							returns: Note that the ‘output’ is 								placed on an internal ‘stack’ 									and to retrieve it, INPUT#6, 									(ar) must be used.

7189		Password				Wait for a password to be entered 								(mask the output to hide the 									password).

7192		Dotm1

7195		Chatmode				Enter chat mode (line 7000).

7198		Cmpdates				Compare the LD$ ML variable to 								what’s in a$, see line 10000.

7201		Diskina				Read a line from the open file #2,

							returns: stack variable.

7204		Readfilec				Read the open file #5 from disk, or 								from RAMEX, clear screen first, see 								gosub15000.

7207		Readfile				Same as above, but don’t clear 								screen.

7210		Getdate				Convert 11 digit date to verbose 								form

							input:an$=date like 18912030110

							output:	stack var like 3-Dec-1989 								1:10a

7213		Figline2

7216		Forty					Print enough spaces to align at the 								column 40 (for two column lists for 								80 column users).

7219		Loadmod				Load a p-file (see gosub5500).

7222		Loadpro				Load a proto file (see gosub881)

7228		Setwindow				Set window borders and clear screen.

7231		Setdate				Set the date from the information 								entered in the C-NET boot program

Setdt2

7237	Figline

7240		Drawscreen0				Draw the system status window.

7243		Drawscreen1				Update the system status window as 								necessary at logoff.

7246		Dnpcheck				Check to see if a device is present.

							input:	7531=device#

							output:	144=system status word.

7252		Pageon					Enable the flashing chat message on 								screen.

7255		Readnoabort				Read a disk file without aborting 								ability for new user file during new 								user logon.

7258		Readfile2				Read a disk file, but using file 2, not 								5.

7434		Enter1

7437		Dotm

7540		Service					Update the menu and clock when we 								have the time (not in the interrupt 								like older 64 versions)!

7549		Scrout

7552		Service

7633		Adout

7636		Getchr

7639		Movea					Moves a$ into the ML a$ storage 								location.

7642		Geta					Puts the ML a$ onto the ‘stack’ for 								INPUT#6’ing.

Inout

7648		Dopause

7651		aout					Output the ML a$ directly without 								having to set a$ in BASIC (faster for 								scanning message titles, etc.).

8454		Tvarlc					Translate a$ into lower case/upper 								mix.

							input:	a$ from BASIC

							output:	stack variable.

-- protos --

14336		proto1:		XRecvFile		Xmodem

14339		proto1:		XSendFile		Xmodem

		proto9:		BasicShell

		proto0:		PunterRecv		Punter

14342		proto9:		GetInfo		For BBS list, get a line

		proto0:		PunterSend		Punter

14345		proto9:		PutInfo		For BBS list, put a line

		proto0:		PunterInitRecv	Punter

14348		proto7:		ClearText		Editor

		proto9:		RunBASIC

		proto0:		PunterInitSend	Punter

11357		proto7:		LineEd			Enter the editor (see gosub11060)

		proto0:		PunterHandshake	Punter

14360		proto7:		L11085		Re-enter editor (see gosub11085)

14363		proto7:		Findspot		Relative files (see gosub8190)

14366		proto7:		Deletespot		Relative files (see gosub8200)

14369		proto7:		FindMax		Relative files (see gosub8350)

11372		proto7:		GetNums		Relative files, find maxlines, lines 								used, etc.

14375		proto7:		PutNames		Relative files, put these values.

14378		proto7:		Pinit			Relative files, init locations.

-- uds.o, subs.o --

62722		uds.o		GetIt

62725		uds.o		PutIt

62726		subs.o		GetInfo

62728		uds.o		GetPDI

62729		subs.o		PutInfo

62731		uds.o		PutPDI

62732		subs.o		GetFlags

62734		uds.o		GetInfo

62735		subs.o		AddResponse

62737		uds.o		PutInfo

62738		subs.o		AddPost

62740		uds.o		SetDates

62741		subs.o		DeleteResp

62743		uds.o		DeleteFiles

62744		subs.o		DelPosts

62746		uds.o		Validate

62747		subs.o		SetDates

62749		uds.o		IncDLs (Increment a times dload counter)

62750		subs.o		GetTotal

62752		uds.o		Gscan

62753		subs.o		GetTitle

62756		subs.o		PutTitle

62759		subs.o		GScan

62762		subs.o		FindNew

62765		subs.o		GetSum

62830		uds.o		GetSum

-- ROM Kernel --

63465		Used by Punter, an RS-232 primitive

65466		SETLFS, A=files#, X=device#, Y=command channel.

65469		SETNAM, A=length, X=<name, Y=>name.

65472		OPEN, A=length of name, X=>name, Y=<name.

65484		CLRCHN, clear I/O channels, print/input from screen.

65493		LOAD, A=0, X=>start, Y=<start.

65496		SAVE, A=zpage location of pointer to start of save, X=>end, Y=<end.

21.5	BASIC VARIABLE

This section contains a list of the most common BASIC variables that are in use in the stock C-NET 128 version 4.0 through 7.0. Each variable is given along with a description of how it is used throughout the program.

Version 4.0 through 7.0 are different from older 128 versions in the sense that variables created in sub-program modules (BBS, Mail, etc.) that aren’t used by the main program are automatically eliminated from existence when the Main Prompt is again reached. For this reason, you will notice only a small number of variables listed here that are SAFE for your uses. Variables now fall into one of several distinct classes:

1)	In a BASIC program file, you may use absolutely ANY variable names and 	number of variables for your purposes. These variables are automatically 	removed from the system when the program file is exited. The one drawback, of 	course, is that useful variables (such as NA$, etc.) can not be used in these files.

2)	In a C-NET program file, a LOCAL, or AUTOMATIC variable. Generally, you 	may use any variable name you wish, as long as it is not found in this list with a 	(!) next to it. If you suspect that a C-NET BASIC subroutine uses one of the 	variables marked (-), simply choose another one that’s not on this list. NEW 	variables CREATED by these files are automatically removed from the system 	when the program file is exited.

3)	STATIC variables, ones that aren’t destroyed by C-NET as program files are 	exited. These variables are desirable for program file modifications that must 	extend between program files are callers (scores in games, or tracking how many 	times a user has played a game, for example). C-NET sets the ‘cut-off’ point for 	variables that will survive through the execution of a program file as those which 	are present in memory when the program file is initiated. To create your own 	static variables, you must ‘instance’ them somewhere before this point, possible 	in prg.setup, or prg.logon after line 61025. This is exactly the purpose of line 	61077 in prg.setup.

4)	New modification variables ‘created’ in the CN file itself automatically become 	static. If it is not your intention that these variables last forever, it is a good idea 	to pick (carefully) from the following list for CN file mods to avoid leaving 	‘trash’ in the system, which may slow things down.

Here’s a key to the symbols used next to variable names:

“!”	Denotes an operating system variable, which must not be interfered with by external programming! There is no problem, however, with reading these variables or using them in calculations, as long as no assignment to them occurs.

“*”	Denotes a variable which is used by the program file support routines. If you exit your program file via ‘gosub5650’ then external programming must NOT use these variables.

 “-”	Denotes a variable that is used and/or altered by one or more system subroutines. Depending on which subroutines your modifications make, it may be unsafe to use any of these variables for more than very temporary work.

-	A		Temp

!	A5(5)		Gosub 750 “,” and “;” routine, temp use.

!	A%		Temp, usually an OUTPUT buffer (syso). MCI variable 5.

!	A1%		Last configured access - used for on-line access changes.

!	AC%		Access group of user on-line 0 to 14, 0 is new user.

*	AC%(41)	For subboards, others, list of entry access codes.

!	AC$(14)	ac$(0)	- ac$(14) is access group information

			byte 1	- minutes per call

			byte 2	- call per day

			byte 3	- minutes max idle

			byte 4	- dloads per call

			byte 5	- uloads per call

			byte 6	- u/d ratio

			byte 7	- messages per call

			byte 8	- p-files (minutes) per call

			byte 9	- feedbacks per call

			byte 10	- editor lines maximum

			byte 11	- sf% flags

			byte 12-14 (ASCII) minutes per day

			byte 15-18 (ASCII) 1/100 cents per minute

			byte 19-22 (ASCII) ag$ group name

!	AG		Age (years) of the user on-line

!	AG$		Access group name for access of user on-line: MCI variable

!	AK$		Thirty-eight =‘s followed by a carriage return

!	AM(31,5)	SAM variables

			AM(x,0)	last caller counter

			AM(x,1)	since setup counter

			AM(x,2)	since period reset counter

			AM(x,3)	totals counter

			AM(x,4)	currents counter

			Where x is 0=Feedback, 1=Mail sent, 2=Mail to ID1, 3=Posts, 				4=Responses, 5=Gfiles read, 6=Pfiles ran, 7=System errors, 				8=New users, 9=Uploaded files, 10=Uploaded blocks, 					11=Downloaded files, 12=Downloaded blocks, 13=New users, 				14=Minutes used, 15=Charges. AM(x,5) is used by the ML to 				keep the dates for “LAST, SETU, PERI, and TOTL”.

-	AN$		Temp, usually an INPUT buffer; MCI variable 7

-	B		Temp

!	B%(10)	Gosub750 parser, temp use

-	B$		Gosub3, error name, temp use, MCI variable 6

-	B1$		In subboards, title of current subboard (filename)

!	BD$		User’s birthday, 6 digits YYMMDD

!	BN		In the subboards, current subboard number

*	BR		In most systems, last read/manipulated list item, in p-files/g-files, 				number of items in current list

!	BZ		In the subboards, U/D number of subboards

!	C		Temp

-	C$		Temp

!	C0%		Tracks the current position in the ring buffer LC$() for the last 16 				commands

!	CA		Total number of system calls

!	CB		Number of public messages posted by the user before his current 				call

!	CC		Tracks charges for individual system functions, before later being 				rounded to the penny and added to Z6%

!	CC%		Flag for u/d, Email, and subboard systems, if cc%=0 no charges 				were made, if non-zero, directory and pointers files must be re-				saved before exiting

!	CC%(14,14)	The accounting system variables, 1st index is the access group, 				2nd is the item (see a command from the Main Menu).

!	CD		Number of blocks that the user has downloaded before his current 				call

!	CH%		Number of times that chat has been requested. When ch% gets to 				be 5, the user is logged off the system. When chat mode is enabled, 				ch% is reset.

*	CM$		Set to the current subsystem’s name, such as “E-Mail”, “Sub 1”, or 				“Pfiles”.

!	CN		Number of calls since the system was set-up

!	CO%		Current user’s computer type

!	CP$(10)	List of computer types (see prg.setup for definition)

!	CR		P-Files/G-Files, the current rate charged per minute

-	CR%(251)	If the editor is used, these are flags telling whether or not 					RETURN was pressed on each line. 1=Yes, 0=No.

!	CS		Tracks the time at which a user entered the P-Files area, to do 				accounting calculations later.

!	CT%		Number of calls the user has made today

!	CU		Number of blocks that the user has uploaded before his current call

!	CV		Number of private messages that the user has written before his 				current call

!	D		Temp use

*	D%(41)	Temp use

!	D$		Temp use

!	DO		In subboards, current subboard # + 6

-	D1%		Used to represent a device number. In maintenance and term, the 				current work device.

!	D1$		The current date and time, the string is 11 ASCII characters in 				length, in the form WYYMMDDHHMM, where W is the day of 				the week (1-7), 1=Sunday, YY is the year, MM the month, DD the 				date, HH the hour (80 is added if the hour is PM), and mm is the 				minutes, MCI variable 0.

-	D2%		Used to represent a drive number. In maintenance, the current 				work drive.

!	D2$		MCI V8, sub-board name for entry files.

!	D3$		MCI V9, last caller for sys.welcome

*	DC		When entering subs/uds/files, tracks the number of paths requested 				(like B4;6;7 has 3 paths).

*	DC%		The counter, counts up to DC.

!	DF		Number of files user has downloaded.

!	DN		Number of blocks user has downloaded, including his current call. 				(Number of blocks this call is obtained by dn-cd).

!	DP%		Default protocol user has selected (see tp$() list)

!	DS		Disk drive error number.

!	DS$		Error channel reading.

!	DT$(20)	Temp use.

!	DV%(46)	Device numbers. 	dv%(1)=system disk

						dv%(2)=email disk

						dv%(3)=etcetera disk

						dv%(4)=g-files disk

						dv%(5)=p-files disk

						dv%(6)=feedback printer flags

						 	bit 0 disk, bit 1 printer

						dv%(7) to dv%(46) contain subboard device 							numbers.

!	DZ		In subs, logon, the current ‘depth’ in a global transversal of all 				subboards including directories.

!	DZ$		Used with DZ, the current directory name, like d.DZ$.

!	E		Temp use.

!	E$		Temp use.

*	E%(45)	Temp use.

!	EF		Unused - once used by ML in older versions.

-	EE		Set to the maximum number of lines (no more than 250) that may 				be used in editor.

!	F$		Temp use, usually filename in u/d and terms.

!	FB(15,9)	Blocks free on any drive, only updated at setup and after logoff of 				each 5th caller to speed through-put. For example, fb(0,2) is 				device	8, LU 0.

!	FC$		User’s first call, 6 digits, YYMMDD.

!	FO%		This flag tells whether or not file 7 is open to the current 					sub-board’s relative file. 1=yes, saves time, not having to re-open 				the file each bulletin read.

!	G		Temp use.

!	GG		The file status byte (st) after a gosub7 to read a line from a file.

*	GS$(30)	In sub-boards, acts as a ‘stack’ to move through all sub-boards, as

in RA, etc., g/pfiles also.

!	HD$		Temp use.

*	HD$(90)	Temp use.

!	HI%		Maximum for gosub750, temp use.

-	HJ$(5)		Used in the 2850 routine when doing +,- scans through the user 				files to find a handle.

*	IB		Used in E-Mail, current mailbox flag.

*	IB$(3)		Used in E-Mail, current mailbox name.

!	ID		The user’s ID (account) number.

*	ID$		In p/gfiles, “P” or “G” to distinguish.

!	II$		The system’s login identifier.

!	IM%		Modem Type

-	IP%		Gosub 2100: if the input ended with “!” ip%=1.

!	JU$		An 80 bit (ten byte) string containing 80 flags for joined or 					unjoined status of the 40 sub-boards and 40 possible ‘root’ 					upload/download libraries.

-	KK		Gosub11060; returns from the editor array number of text lines 				used in the editor array tt$(). kk=0 if the editor was “aborted”; 				counters.

!	KK$		Temp use.

!	L1$		User’s address, line 1.

!	L2$		User’s address. line 2.

!	LC$(16)	The activity queue (last 16 commands).

!	LD$		Last call date/time for the current user, see D1$ for date format; 				MCI variable 1.

!	LF		Line feeds required (1=yes).

!	LK Last Caller Screen Active Flag.

!	LK$()		Last 10 Callers array.

*	LL		In p/gfiles, number of sub-directories deep (each directory appears 				in dt$()).

!	LL%		User’s line length (22 to 80 columns).

!	LN%		Temp use.

-	LP		Gosub40; set LP=1 before a gosub40 to automatically carriage 				return after a$ is output.

!	LP%		The last PROTO file number loaded, to prevent re-loading.

!	LT$		Sign-on date/time for the current user, see D1$ for the date and 				time format.

!	MF		Flag: note missing files as missing when doing a file read (gosub 				15000, 16000).

!	MI$		Used to hold multiple command input, holds the text entered 				following the “ @+@ “ character in the input. Gosub2100,2200 				check this string for input before keyboard or modem input.

!	MR%		First mail record in the Email’s relative file for the current user. =0 				if he has no mail.

!	MU(71,1)	Activity graph counters. 1st index is for each 20-minute period 				during the day, 2nd is for time spent.

-	MW		Gosub40; if mw is set to 1 before a gosub40, a spacebar or “/” 				press will immediately abort the output where the key was pressed.

*	MX(3)		Used in E-Mail. Maximum number of messages allowed in each 				mailbox.

!	N%		Temp use.

!	N%(90)	Temp use.

!	NA$		The user’s handle: MCI variable 2.

!	NL		“More?” prompt option selected, 1=yes.

!	NM%		In the sub-boards, the number of message headers (posts + 					responses).

*	NN$(102)	In p/gfiles, the ‘source’ column in the list.

!	O		ALWAYS set to the ML output routine (7171).

-	P1%		Used often or ML communications.

!	P%()		Alphabetical arrangement for ID numbers.

!	PA%		Paranoid flag.

!	PB%		Number of public messages user has left.

!	PH$		Phone number of user.

!	PL		PL=1 before input indicates all uppercase.

!	PR$		Current PRG file name.

!	PV%		Number of private messages user has left.

!	PW$		Password of user.

!	RC		=1 if space bar or / pressed during gosub40.

!	RN$		Real name of user.

!	SF%		Contains access group flags.

!	SH		=47 if / pressed during output.

!	SI$()		Holds u/d and subboard configuration data.

!	SR%		Number of screen rows.

!	SY$		Name of last config file (U/D or Sub).

!	TC%		Total calls.

!	TR%		Time remaining in minutes.

-	TT$()		The editor text array.

!	UF%		Number of files uploaded.

!	UL		Upper/lowercase flag 1=yes.

!	UP%		Number of uploads user has made.

!	UR		Number of user accounts.

!	US%		Used lines in current del file.

!	V7$(10)	C-NET v7 variables

				V7$(01) = HD Type

				V7$(02) = Real-Time Clock Device

				V7$(03) =

				V7$(10) = Serial Number

!	WW		Word wraparound for input flag.

!	X$		Contains system drive numbers.

!	XM%		Help level.

!	Z1%		Minutes used today in previous call.

!	Z2%		Money balance for accounting system.

!	Z3%		Maximum minutes per call.

!	Z4%		Charge per minute for the accounting system.

!	Z5%		Maximum debt (credit).

!	Z6%		Other charges.

!	ZZ		ZZ=1 indicates local mode.

21.6	ACCESS FLAGS

Below are the bits that are checked for access to different areas of C-NET. If the bit is on (equals one), the user has access to that particular area. Note that a bit can only be on or off.

			If the byte being checked is:

And the bit	

being tested is:		sf%			s1%		s2%		s3%

	1		System Maint		P-file		Adopt		Write

			access			access		orphans	private msg

	2		Email access		G-file		READ pvt	Not used

						access		message

	4		Ulist access		Bypass UD	Delete ANY	UD Maint

						ratios		file		commands

	8		Edit profile		Bypass		Delete OWN	Files Maint

			access (EU)		calls/day	files		commands

	16		Subboard		Bypass		User purge	Write to wall

			maint (msgs)		min/call	exempt

	32		MCI level 1		Bypass time	Auto-validate	Restart the

			access			restrictions	files		wall

	64		MCI level 2		Bypass		Write anon	Not used

			access			file lock(Pfiles)messages

	128		RE-logon		Alias Msg	Trace		Not used

			command		author(can 	anonymous

						see who 	messages

						actually wrote)

Note that particularly in v6.0, you cannot issue any System Maintenance commands without entering the ID command and successfully entering the system password while at a remote location.

There is also a bypass for the idle timer, that is not being used correctly at the time of this writing, connected to the Bypass times flag.

21.7	BREAKDOWN OF C-NET MAIN PROGRAM ROUTINES

	Line #		Description

	2		Position relative file

	3		Read error channel

	4		Check for carrier

	7		Read string from disk into a$

	9		Expand date in an$

	12		File scratch routine

	15		Print a period

	17		Print one new line

	18		Print two new lines

	19		Open disk drive command channel

	23		Scratch and re-write a file

	27		Open etc.recs file

	35		Print area in top right corner

	40		Output a$

	50		Subsystem closed message

	220		Initialization/configuration

	400		Waiting for call

	500		Read free blocks

	700		Decipher editor ranges

	850		Read a SYS config file

	880		Load a U/D protocol program

	920		Connection to the system

	1300		Main command level

	2100		Input a line into an$

	2150		Input a password into an$

	2200		Get a single character

	2250		Read access group information

	2300		Various general commands

	2850		Searches for the user’s ID number

	3000		Check for commands available at all levels

	3100		Modem operations

	4000		View sysop of current subboard

	5500		Read a PRG file into memory

	6000		Logoff

	7000		Chat mode

	8000		Enter bulletin board subsystem

	8100		Relative file manipulation

	8400		Uploading and downloading

	10000		Compare dates for new operations

	10500		Send electronic mail routine

	11000		Editor subsystem operations

	60000		Open file routines

	61000		PRG loading space.

21.8	BASIC ERROR CODES

For reference, here are the error number codes for many of the more frequently encountered BASIC errors:

1	Too many files				2	File open

3	File not open				4	File not found

5	Device not present			6	Not input file

7	Not output file				8	Missing file name

9	Illegal device number			10	Next without for

11	Syntax					12	Return without gosub

13	Out of data				14	Illegal quantity

15	Overflow				16	Out of memory

17	Undef’d statement			18	Bad subscript

19	Redim’d array				20	Division by zero

22	Type mismatch			23	String too long

24	File data				25	Formula too complex

36	Bad disk				41	File read.

21.9	SOME FILES YOU MAY WRITE FOR YOUR SYSTEM

Below are some of the sys.* files that C-NET uses that you may write for your system. Note that there is no requirement that you do write them, as C-NET will operate without them.

sys.aboard		This file is used when R)eplying to new user applications. If you 				desire to send a ‘Standard” welcome (format letter), this is the file 				to write.

sys.validation		This file is used to inform your users that all the files that are 				uploaded to a particular subboard requires validation by a Sysop or 			sub-operator before it can be ‘made available’ to other users.

sys.start		This file is shown to the user after C-NET sorts out whether the 				user is calling with C/G mode, or ANSI, or using an ASCII 					terminal mode.

sys.welcome		This file is shown to the user after he successfully logs onto the 				BBS, and is told how many more calls (if any) are allowed for that 				day.

sys.access#		This file is one that can be written to show users of a specific 				access group information or other items of interest particular to 				that access group. It must have the access group in numeric form 				(i.e., groups ten through fourteen must be shown as 10 or 14).

sys.second		This screen is available for your use to show users that call more 				than once per day, much like another sys.welcome, or just to 				inform them that this is their second call (or higher) for that day.

sys.today		This is the Today in History file that you can toggle on and off at 				the MACS screen. Note: this file should not be messed with!

sys.u/d			This file can be shown to users that do NOT have access to the UD 			area.

e.subboard		These files are the intro files for each subboard available to the on-				line user. Note that you may have a different file for each 					subboard that you have on your system.

e.u(s)main		These files are the entry files that can be shown to users on the 				way into the UD bases or the Subboards (message bases).

			NOTE: ALL subboard entry files are skipped by setting your help 					level to greater that level 2.

sys.warning		This file is used to advise the user that they are about to run out of 				time. The system will otherwise tell the on-line user ‘Less than x 				minutes left!’ if this file is not found.

sys.new user		This file is read off to the user when first calling into the system as 			a new user.

sys.badnames		This file is used by the new user application process to find out if 				you wish to allow the handle or not. See the New User portion of 				the manual for more information on this.

sys.badnumbers	This file is used by the new user applications process to find out if 				the phone number they enter is one that is restricted or not. See 				the New User portion of your manual for more information on this 				subject.

sys.new @file		(where the @ could be for the P-files or G-files). These files may 				be written to allow use of the ‘N’ command in the p-files and g-				files areas. The intent was to allow news writing for each area of 				the files system.

sys.info		This file can be written to tell the user about what your BBS is run 				on, e.g., equipment and the like. Don’t forget to tell them about 				the software!

21.10	MENUS BY THE NUMBERS

Below are the menus that are available to your users if they enter a question mark.

sys.menu 1	The Main Command area menu

sys.menu 2	The Message Base area menu

sys.menu 3	The editor Help menu (.h while in the editor)

sys.menu 4	The System Maintenance menu

sys.menu 5	The UD area menu

sys.menu 6	The E-Mail menu

sys.menu 7	The News/G-file/P-file menu

sys.menu 1a	The ‘All Levels’ commands

sys.menu 2a	The ‘While reading posts’ menu

sys.menu 2b	The ‘End of Post’ menu

sys.mmenu 0	Main menu shown novice users

sys.mmenu 1	Main menu shown intermediate users

sys.mmenu 2	Main menu shown expert users

*NOTE: Users that have logged on as a ‘Superuser’ will not be given any main menu 	commands shown on the screen.

