- MESSAGE COMMAND INTERPRETER (MCI) -

15.0	MESSAGE COMMAND INTERPRETER (MCI)

The MCI is used to change the text color in 64 color/graphics mode, create special effects like backspacing, ask questions in the middle of a message, etc. The character that is used to trigger the MCI is the English pound key (the key to the right of the minus key and to the left of the CLR/HOME key). Outside of the editor system, this key may not be used. Within the editor system, only users with access groups configured to use MCI may hit this key. Only high level access groups and system operators should be given access to the MCI as it is easily over used and misused. These commands can be placed anywhere in the text. The ‘#’ has been used in place of the English pound sign in these explanations. These commands are always used as #Xn where ‘X’ is a command letter and ‘n’ is a single digit number.

	#a1	Disable the use of the spacebar or the ‘/’ key to abort the current message.

	#bn	Print number of beeps to the user on-line.

	#cn	Change the text color display in color graphics mode. (NOTE) You may 			simply use the CONTROL key plus the color key, or the C= key plus the 			color key while in CG Editor mode. Programming mode requires the 			‘#cn’ command and the appropriate MCI number in the list below:

		0 Black	1 White	2 Red		3 Cyan

		4 Purple	5 Green	6 Blue		7 Yellow

		8 Orange	9 Brown	J Pink		K Gray 1

		L Gray 2	M Lt. Green	N Lt. Blue	O Gray 3

		On the 128, 8 is dark purple, and K is dark cyan. (NOTE): Not all of these 		colors show up in ANSI mode.

	NOTE: Place a double pound sign ‘##’ in any text where you want the pound 	sign to be displayed in the actual text.

	#dn	After a ‘#t’ (test) MCI command, branch to the label number indicated 			(see the ‘#mn’ command for information about labels) if the test was not 			equal.

	#en	After a ‘#t’ (test) MCI command, branch to the label number indicated it 			test succeeded.

	#f0	Move the cursor to the home position (don’t clear the screen first).

	#f1	Clear screen and Home the cursor.

	#g1	Stop printing until a character is pressed. The input will be considered as 			(an$) for programming, and converted to upper case if necessary.

	#hn	Will print a specified number of backspaces.

		NOTE: The maximum number that MCI will accept is 9 (nine). If more 			than 9 spaces are required, you MUST issue the command again with the 			extra spaces added. Example: you want 14 backspaces, you enter 				‘#h9#h5’.

	#in	Stop printing until a full line in input and return pressed. The line will go 			into (an$) and will be converted to upper case as necessary.

	#jn	Jump directly to label specified by a number or letter.

	#k1	Turn multi-color on.

	#k2	Turn multi-color off.

	#l1	Turn the printer on.

	#l2	Turn the printer off.

	#mn	A label mark. This command marks the spot in a message where the 			cursor must jump to after a ‘#tn’ (test) and followed by the ‘J’, ‘E’, or ‘D’ 			command. If the ‘J’ command is used by itself, there will be a direct jump 		without a test. See the ‘#tn” command for the different tests which trigger 		a jump.

	#nn	Print a number of blank lines/carriage returns.

	#on	Toggle the flash mode on or off (1=on 2=off). This only works with true 			128 graphics terms. Will not work with ANSI or ASCII modes.

	#pn	Change the screen print mode to one of the following:

		0 - Normal output

		1 - Print letter, backspace, then print letter again

		2 - Print letter, run 8 spaces out then back space to the letter again

		3 - Print letter, backspace over it

		4 - Print letter, backspace, print letter

		5 - Print letter, run line, backspace, print next letter.

	NOTE: These codes cause all sorts of delays, and should not be used in the 	subboards.

	#qn	Cancel all MCI codes currently in memory. Return to normal text print.

	#rn	Toggle reverse video. (1=Rev on 2=Rev off). Only good for a single line 			of text. Must be entered on each line you want this effect to appear on. A 		carriage return auto cancels this mode.

	#sn	Change the screen print output speed. Each number over 0 adds a delay of 		1/20th of a second between each character printed.

	#tn	 Used to test variables (tests to be used with the Jump routines and Labels)

		1.	(an$) Testing for ‘an$’ must end with an additional pound sign to 				mark it’s end (i.e., ‘#t1a#’ tests for an$ beginning with the letter a, 				etc.).

		2.	Access group test. The character following the number 2 will 				indicate the access group to compare the user on-line with. ‘@’ 				represents group 0, lower case letter ‘a’ through ‘o’ represent the 				others. Example; ‘#t2g#EA jumps to label A if the user on-line is 				access group 7.

		3.	Sysop access. This is used in menus, etc., to only display 					commands and such to the Sysop group. Example; System 					Maintenance commands will not be displayed to the users who 				don’t have that access.

		4.	Test for true CG mode. Allows you to place color graphics screens 			and pure text screens in a single MCI file (such as sys.welcome). 				If the test for CG mode is true, the graphic will be displayed, if not, 			a jump to a pure text line is possible for ANSI and ASCII users.

		5.	Test for 80 column mode. Will test the users system for 80 				column, and allows a jump to another line if 40 column is in use. 				Can be used in conjunction with the test for true CG mode to add 				additional text and graphics or NOT as the case may be.

	#un	Toggle underline mode on and off (1=on 2=off). Works in true 128 			graphics mode only.

	#vn	Prints out variables currently in memory as specified by the number as 			listed below:

		0.	Current date and time.

		1.	Last call date and time the user was on-line.

		2.	Handle of the user on-line.

		3.	Real name of the user on-line.

		4.	Phone number of the user on-line.

		5.	The variable a$. Use in programming mode only.

		6.	The variable b$. Use in programming mode only.

		7.	The variable an$ when used as the last ‘#g1’ or ‘#I1’.

		8.	The variable d2$. Use in programming mode only.

		9.	The variable d3$. Use in programming mode only.

		J.	The user’s password.

		K.	The user’s current access group name.

	#wn	Wait a number of seconds before continuing (a delay).

	#x1	Exit the message at this point. Return to system from a message.

	#y1	Disable automatic word wrapping.

	#zn	Toggle to the upper case mode. Used when upper case and graphics are 			required. (1=upper case and graphics, 0=upper and lower case letters)

	#^n	(up arrow) Move the cursor up number of lines.

	#!n	Move the cursor down a number of lines.

	#<n	Move the cursor left a number of columns.

	#>n	Move the cursor right a number of columns.

	#-n	(minus sign) Print (number) of blank spaces on the line.

	##	Actually print the English pound sign.

Note that the MCI commands may be placed one after another on a single line and anywhere in the middle of any text. If a branch command is encountered but not taken, the rest of the line after the branch will still be executed.

The MCI commands can not only be placed in messages, but anywhere in the program if you are modifying it. For example, if you are making a routine which requires a four second pause, you can use ‘#w4’ in any output statement.

Following is a sample message containing MCI commands that will ask a user if he is interested in a board event. If he is, he will be asked questions which will be printed to the printer, otherwise the message will be aborted.

	Hello #v3#w1, I mean #v2!

	Are you interested in the board dinner? #g1#t1Y##e1#x1

	#l1

	I am glad that you can make it #v2.

	How many people are you bringing? 3I1

	Do you own your own car? #I1

	#l0

	OK, Thanks again, #v2, a SysOp will be contacting you at #v4...

