

The PPL
Development Kit

The PCBoard Programming Language
Reference Manual

Copyright 1993 © Clark Development Co., Inc.

This software product and manual are copyrighted and all rights are reserved by
Clark Development Co., Inc. No part of the contents of this manual may be
reproduced or transmitted in any form or by any means without the written
permission of the publisher.

Clark Development Company, Inc. does not assume any liability arising out of
the application or use of any products described herein. Clark Development Co,
Inc. further reserves the right to make changes in any products described herein
without notice. This document is subject to change without notice.

PCBoard in a registered trademark of Clark Development Company, Inc. PPL is
a trademark of Clark Development Company, Inc.

Chapter 1 - Introduction to PPL

Chapter 2 - Installing PPLC

Chapter 3 - Developing PPL Applications
Step 1 - Creating Source Code

Step 2 - Compiling Source Code

Step 3 - Installing Your Application

PPE Files as Commands

PPE Files as Script Questionnaires

PPE Files Attached to PCBTEXT Display Prompts

PPE Files in Display Files

PPE Files as Display Menus

Step 4 - Testing Your Application

Chapter 4 - Using PPLC
Running PPLC

Specifying the Source Code File

Compiling Source Code

Compiler Warnings

Compiler Errors

Compiler Exit Codes

Chapter 5 - A PPL Tutorial
"Hello, World!"

Same Thing Done Differently

Fancy Variations

PPL Applications as Commands

Operator Page

Start

PPL Applications as Script Questionnaires

3

7

11
11

11

12

12

13

13

13

14

14

17
17

17

18

19

20

23

27
27

27

28

29

30
33

34

PPL Applications as PCBTEXT Display Prompts

Password Expiration Warning

Logon Language Prompt

PPL Applications in Display Files

Node Specific Display Files

Interactive Welcome Screens

PPL Applications as Display Menus

Chapter 6 - PPL Structure
Basics

Comments

Variable Declaration Statements

Code Statements

Expressions

Constants

Functions

Sub-Expressions

Operators

Chapter 7 - PPL Reference
Lists by Type

Constant List

Function List

Statement List

Type List

Variable List

Alphabetical List

36

36

37

39

39

39

42

47
47
47
47
48

49
49
50

50

51

55
55

55

55

56

56

56

57

1
Introduction to PPL

Introduction to PPL Chapter 1

Introduction to PPL

Welcome to the PCBoard Programming Language (or PPL for short). A question that we
regularly get is "Can we get source code for PCBoard?" Up until now the answer has been no.
Well, the answer still is no (sorry, we aren't going to start selling our source code just yet!), but
you can achieve almost the same level of control with PPL. You see, PPL applications can
access files, control the local and remote displays, watch for input from the keyboard and
modem, access user information, and more. And, all this can be accomplished without the need
to go into a door or other external program because PPL support is built right in to PCBoard.
PPE files (compiled PPL applications) are smaller than equivalent EXE files (and load and exit
more quickly) because they take advantage of what PCBoard has already loaded into memory:
a complete, robust operating environment for telecommunications!

Since PCBoard has the ability to run PPE files directly, you can write PPL applications to
distribute to other SysOps as well. The PPLC package may not be distributed, but you may
distribute your PPS files (PPL source code) and/or your PPE files in any way you see fit
without any royalty payments or run-time licenses.

PPL is a new programming language. Although it is unique among other languages, it does
bear many resemblences to BASIC and batch file programming. If you've never programmed
before, don't worry; simple applications are a breeze to create. You need not understand
everything that PPL has to offer and can learn as you go. If you are an experienced
programmer in other languages, then PPL has a lot to offer you too.

Don't be fooled; although PPL is capable of many things, it is not designed to be all things to all
people. You will still need (or want) other applications that you have used and trusted for a
long time. Doors will not disappear because of PPL, nor should they. In fact, the PCBoard
DOOR Developer's Toolkit makes a great companion to PPL for all of your board
customization needs. If you are a CIC++ programmer, give us a call for more information
about the PCBoard DOOR Developer's Toolkit.

However, what you can do with PPL (that you can't do with doors) is modify the action of your
BBS. You can built new commands (or replace existing commands) by putting PPE files in the
CMD.LST file. You can design intelligent script questionnaires by installing PPL applications
in your SCR.LST files. You can attach PPE files to display prompts in PCBTEXT files. You
can even launch a PPE from a display file or instead of a display menu! But before we can do
any of this, we do have a few things to take care of first ...

The PPL Development Kit 3

Chapter 1 Introduction to PPL

The PPL Development Kit

2
Installing PPLC

lnstalllng PPLC Chapter 2

Installing PPLC

The PPLC development system comes on a single double density floppy disk. To install it do
the following:

1. Insert the installation disk in an appropriate floppy drive (A: or B:).
2. Change to the drive (A: or B:) with the installation disk.
3. Type INSTALL to copy the files to your hard drive.

The INSTALL program will ask you for the drive to which the files should be installed. The
default is C:. After selecting (or con:finning) the drive letter you will be prompted to confirm
default or enter new paths (C:IPCB and C:\PCB\PPL) to which to install the files. The
following files will be installed on your system:

I. PPLC.EXE will be installed in your C:IPCB (or user selected) directory.
2. •.PPS files (files with a PPS extension) will be installed in your C:\PCB\PPL (or

user selected) directory.

The following tutorial PPS files are included: DOORS.PPS, HELLOI.PPS, HELLO2.PPS.
HELLO3.PPS. HELLO4.PPS, HELLOS.PPS, HELLO6.PPS, HELLO7.PPS.
LANGUAGE.PPS, NODEFILE.PPS, OPPAGE.PPS, ORDER.PPS, PWRDWARN.PPS.
START.PPS, and WELFIRST.PPS. Other examples may be included as disk space permits
so be sure to check out the C:IPCB\PPL directory.

The PPL Development Kit

Chapter2 Installing PPLC

8 The PPL Development KiJ

3
Developing PPL

Applications

Developing PPL Applicatlons Chapter3

Developing PPL Applications

There are several steps involved in creating a PPL application. First, you have to write the
source code. Second. you must compile the source code. Third, you must insta11 the compiled
application somewhere in PCBoard. Finally, you need to test the application. For every PPL
program you write, you will likely repeat this process several times as you write. compile. test.
modify, recompile, and test your modifications.

Step 1 - Creating Source Code
Before you can do anything you must write your source code. By default the compiler expects
a file with a PPS extension for your source code, but you can make that extension anything you
want except for PPE. You will need to use a text editor to write your source code. Any editor
that will save files as unformatted ASCII text will suffice.

Step 2 - Compiling Source Code
After you've created your source code (as outlined above) you need to compile it. This is
where you use PPLC.EXE. To run PPLC.EXE simply type PPLC at the DOS command
prompt and hit EN1ER:

C: \PCB\PPL>PPLC

Since we didn't specify a file name the following screen will be displayed:

C: \PCB\PPL>PPLC

l'l'LC V■r■ioa. 1. 00 - l'CBoard l'rogr11111111inc, Language Compiler

'D'SAGB: HLC SllCNUIB [.BX'l'J

C: \PCB\PPL>

The first line is to let you know what version of PPLC you are running. The second line is to
remind you how to use the program. PPLC requires at least the base file name in order to
execute. Additionally, you must specify the extension of the file if you didn't use the PPS
default that PPLC automatically looks for. Finally. if the file you want to compile isn't in the
current directory, you would need specify the path to the file. So. let's say we wanted to
compile the source code we created in step I. If the file name that we created was
HELLO.PPS and it existed in the current directory then we would enter the following
command:

C: \PCB\PPL>PPLC BBLLO

We could have typed in HELLO.PPS instead of just HELLO. If the file was named
HELLO.SCR we would have needed to type in the entire file name with extension. Finally. if
the file wasn't in the current directory. we would have specified the path to file (for example.

The PPL Dnelopment Kit 11

Chapter3 Developing PPL Applications

SOURCEIHELLO or C:IPCBIHELLO.SCR). The following is a sample of the output that
PPLC would generate after compiling HELLO.PPS without any problems:

C: \PCB\PPL>PPLC HELLO

PPLC V•raion 1. 00 - l'c:Board l'rosraming Language Compil•r

•••• 1 ...

Paa■ 2 •••

Source compilation complete •.•

C: \PCB\PPE>

After the compile is finished without errors, a new file named HELLO.PPE will exist in the
same directory as the source code. For more information on using PPLC. see the Using PPLC
section.

Step 3 - Installing Your Application

12

OK, now that we have a compiled application from step 2 we need to install it into PCBoard so
that it may be used. Since there are several ways to install a PPE file, we will go over each of
them at this time.

PPE Files as Commands

You can create new commands (or modify existing ones) with PPL. After compiling the
application you install the PPE like this:

I. Run PCBSetup;
2. Hit B to select File Locations;
3. Hit B again to select Configuration Files;
4. Move down to "Name/Loe of Default CMD.LST File" and hit F2;
5. Add your PPE file to the list with an appropriate name and security level

requirement.
In addition to the default CMD.LST file, each conference can have it's o,m specific CMD.LST
file where you may want to install the PPE file:

I. Run PCBSetup;
2. Select the desired conference:
3. Hit the Page Down key to access screen two of the conference configuration;
4. Move down to "Conf-Specific CMD.LST File" and hit F2;
5. Add your PPE file to the list with an appropriate name and security level

requirement.
If the PPE file can accept parameters you may enter them (on the same line) immediately
following the PPE path and file name in the CMD.LST editor.

The PPL Development Kil

Developlng PPL Applications Chapter3

PPE Files as Script Questionnaires
You can create intelligenl script questionnaires in place of (or in addition to) standard script
questionnaires with PPL. After compiling the application you install the PPE like this:

I. Run PCBSetup:
2. Select the desired conference:
3. Move down to the Scripts Path/Name List File and hit F2;
4. Add your PPE file to the list in the desired position with an appropriate answer file.

In addition to the conference specific script listings. there are three other scripts that may
utilize PPL: new user. logon and logoff questionnaires. They may be installed as follows:

I. Run PCBSetup:
2. Hit B to select File Locations:
3. Hit D to select New User/Logon/off Questionnaires:
4. Move down to the desired questionnaire and enter the path and file name of the PPE

file to use.
If the answer path and file name is defined for a PPE based script questionnaire then a
temporary file will be opened on channel O for questionnaire output. After the application has
exited normally the temporary file will be appended to the answer file. If the application is
exited abnormally the temporary file wi11 not be appended to the answer file. In either case.
the file will be deleted after PPE tennination.

PPE Files Attached to PCBTEXT Display Prompts
You can attach PPE files to prompts in the PCBTEXT file that are displayed to the user. After
compiling the application you install the PPE like this:

I. Run MKPCBTXT;
2. Select the desired display prompt:
3. Clear the existing prompt with the Ctrl-End key;
4. Enter an exclamation point(!) in the first column, followed immediately by the PPE

path and file name.
If the PPE file can accept parameters you may enter them immediately follO\\"ing the PPE path
and file name. Additionally. if it is a question prompt and you don't want PPL to display the
standard question mark (?) and optional guides. add an underscore after the last character
entered in the prompt field.

PPE Files in Display Files
You can include a PPE file in a display file. It will be run everytime the file is displayed.
After compiling the application you install the PPE like this:

I. Load your text or graphics file editor:
2. Position the cursor on column one of a blank line:
3. Enter an exclamation point(!) in column one. followed immediately by the PPE

path and file name.
If the PPE file can accept parameters you may enter them immediately following the PPE path
and file name on the same line.

The PPL Development Kit 13

Chapter3 Developing PPL Appllcations

PPE Files as Display Menus
You can also completely replace a display menu (such as BRDM, BRDS, BLT, DOORS, etc.)
with a PPE file. Simply give it the same base name as the display menu you want to replace
(for example, you would replace BRDM with BRDM.PPE) and put it in the same directory as
the original.

Step 4 -Testing Your Application

14

Alright. now that we've nlitten our source code, compiled it to a PPE file, and installed it. all
that is left is to run it. Before you make it available for others to use you should test it yourself
and confinn that it works the way you intended. If you find a problem with the execution, go
back and repeat steps 1, 2 and 4. (It is already installed so you probably don't need to re-install
it!)

The PPL Development Kit

4
Using PPLC

Using PPLC Chapter 4

Using PPLC

The core of the PPL development system is the PPL compiler, or PPLC.EXE (or just PPLC).
PPLC.EXE is the program that reads source code files and generates compiled applications. A
brief example of the usage of PPLC was given in the previous section. This section describes
in detail how to use PPLC and what information it returns.

Running PPLC
Running PPLC is very simple. Type PPLC at the DOS prompt, just as you would with the
name of any EXE, COM or BAT file. For example:

C:\PCB\PPL>PPLC

If PPLC.EXE in not in the current directory or any directory listed in the path, you would need
to specify the entire path to the compiler. As an example:

C: \PCB\PPL>D: \PPL\PPLC

► NOTE: The remainder of the examples in this section will assume that PPLC
is available in the current directory or the path.

Since we typed in PPLC without any arguments, it will come up with the help screen:
C:\PCB\PPL>PPLC

l'PLC Version 1.00 - PCBoa.rd ProgrlUIIIIIJ.ng Language Compiler

'O'SAGS t PPLC SRCIIAIIB [• BXT]

C:\PCB\PPL>

PPLC expects a single parameter to be passed: the path (optiona)). file name. and extension
(optional) of the source code to compile into a PPL application, or PPE file. If the path is not
specified then the current direct01y is assumed. If the extension is not specified, an extension
of PPS is assumed. No matter what, never create a source code file with a PPE extension! The
reasons will be explained shortly. In the meantime, just don't use that extension.

Specifying the Source Code File
The source code that is processed by PPLC to create a PPE file is created with a standard text
editor as outlined in Developing PPL Applications. Let's say that you have created and saved a
file named HELLO.PPS. Assuming it was saved in the current directory and that the current
directory is C:\PCB\PPL, any of the following command lines could compile the source code:

C:\PCB\PPL>PPLC DLLO
C:\PCB\PPL>PPLC DLLO.PPS
C: \PCB\PPL>PPLC Ct \l'CB\PPL\DLLO
C: \PCB\PPL>PPLC C:\PCB\PPL\BBLLO.PPS

The PPL Development Kit 17

Chapter4 UsingPPLC

Had we given the file an extension of something other than PPS we would have been required
to specify it on the command line. So, to compile a file named HELW.SCR, we would type:

C: \PCB\PPL>PPLC BBLLO,SCR

If we created the file in a directory other than the default, we would need to specify the path
with the file name. So, to compile a file named HELW.PPS in the D:ISOURCE subdirectory,
we would type:

C: \PCB\PPL:>PPLC D;\SotlllC'B\BBLLO

Of course, if the file contained a non-standard extension and was located in another directory,
we would have to specify both the path and extension.

► NOTE: The remainder ofthis section assumes that source code files always
have a PPS extension and are located in the current directory.

Compiling Source Code

18

OK, now that we know how to run PPLC and the command line parameters required to specify
a file name, let's get down to the business of compiling a program. The most simple compile
possible looks something like this:

C:\PCB\PPL>PPLC HELLO

l'PLC V•r■ioD 1.00 - PC8011r4 Programiq LIIDgu.age Compil•r

Paaa 1 •..

1'11118 2 • , ,

source compilation camp late .• ,

C: \PCB\PPE>

We specify an existing file name and PPLC compiles it and generates the PPE file without
warnings or errors. Of course, on our first attempt we will often make a mistake and get some
sort of an error message:

C: \PCB\ PPL> PPLC HELLO

PPLC Vereion 1.00 - PCBoard Programm.ing Limguage COmpiler

Paeel.,./

warning in line nllllher 2
'l'oo many arcrwaeat• paHed (PRBBBLXIIB:Osl)

Pa■■ 2 •••

Sourc• compilation completa, , •

C: \PCB\PPE>

In this case we encountered a warning. Warnings are not fatal; all they do is tell us that we
may have made a mistake on a line of source code, but that the compiler can still generate a
PPE file. The only warning message returned by PPLC is for too many arguments passed to a

The PPL Development Kit

UslngPPLC Chapter4

slatement, function or array variable. Since PPLC can safely ignore extra parameters it is not
a fatal error. An example of error messages might look something like this:

C: \PCB\PPL>PPLC HELLO

Pl'l.C: Ver•ion 1.00 - PCBoard ProgrU11Ding Language Compiler

Pasal .•• /

Error in lina number 1
variable not fOUlld I S'l'll)

Error in liu number 2
Hot enough argwaeat■ paa•ed. (NBWLl:IIBS:1:0)

Error in line number 3
Variable not fouD4 (S'l'R)

Brror in line number 4
Variabl• not fouD4 IDID)

Brror(■) encOUD.tered., compile aborted •••

C: \PCB\PPL>PPLC HELLO

As with the warnings, we are given the line number were the error was found. Unlike
warnings, however, errors are fatal. The compiler cannot recover from an error and still
generate a PPE file. If an error is found during the compile PPLC will finish the current pass
so that you may see all errors that need to be fixed before the source code can be successfully
compiled.

Compiler Warnings
Anytime a non-fatal syntax mistake is found during the compile a two line waming message is
displayed. The first line will always have the following format:

warning in line nWlber I

The pound sign will be replaced with the line number where the warning was found. The
second line will be the actual warning text. The following is the only warning message
supported at this time:

'l'oo aany argument■ pa■■ed. (Jt:B:R)

The parentheses will be filled with specific information about the warning. The K. "ill be
replaced with the statement or function (or ARRAY if the problem is with an array) that
generated the error. The E will be replaced with the expected number of arguments, and R
with the number of arguments actually received.

The PPL Development Kit 19

Chapter4 Using PPLC

Compiler Errors

20

An)1ime a fatal error is encountered a two line error message is displayed. The first line will
always have the following format:

Error ia line number I

The pound sign will be replaced with the line number where the error was found. The second
line will be the actual error text. The following is a list of error messages that may be returned
and an explanation of what each means:

•Bad structure end ■tatamant (BBQ-END)•

An attempt was made to close a block structure (IF block, WHILE loop, or FOR loop) with the
wrong end statement. IF requires ENDIF. WHILE requires ENDWHILE, and FOR requires
NEXT. BEG is replaced with the type of structure (IF. WHILE or FOR) and END is replaced
with the statement that was used to attempt to close the block structure.

•Block start (IF/NBILE/POR) IIL\ll!lt coma before block end atataaant•

A block structure closing statement (ENDIF, ENDWHILE or NEXT) was used without a
matching block begin statement (IF, WHILE or FOR).

"Cloaing parenthe■ill 110t found IBXPII./ARGS/LINB)"

An open parenthesis was found but a matching closing parenthesis was never found. The
expression, argument list or line missing the parenthesis is displayed in place of
EXPRIARGS'LINE.

"Closing quote not found I LINB) "

An open quotation mark was found but a matching closing quote was never found. The line
missing the quote is displayed in place of LINE.

"Error evaluating constant expression (BXPII.)"

PPL requires a constant expression (an expression without variables) when defining the size of
array dimensions. If there is an}thing wrong with a constant expression this message will be
displayed. EYPR will be replaced by the constant expression with the error.

"Expression may not end with an operator (BXPR) •

The last term of any expression must be a variable, constant. function or subexpression. If an
operator is found with nothing after it this error will be displayed. E\"PR will be replaced by
the expression with the error.

"IF/WHILE requires a conditional expre■■ion to evaluate"

IF and WHILE statements require an expression to evaluate to determine what course to take
during program execution. If that expression doesn't exist. or if it is not surrounded by
parentheses (which are required by PPL) then this error will be displayed.

"IF/WHILB requires a statement after the conditional expression"

IF and WHILE statements require a statement to execute if the condition is TRUE. If that
statement doesn't exist then this error will be displayed.

The PPL Development Kit

UslngPPLC Chapter4

nillegal label ILABBLI"

A label must start with a letter (A-Z) and may contain letters, numbers (0-9) and the
underscore character U. Although they may be of any length. the compiler wil1 only
recognize the first 32 characters. If a label does not conform to these rules this error will be
displayed.

n J:llegal variable DUU!!I (VAR) n

A variable name must start with a letter (A-Z} and may contain letters, numbers (0-9) and the
underscore character L>- Although they may be of any length, the compiler will only
recognize the first 32 characters. If a variable name does not conform to these rules this error
will be displayed.

n:rnvalid character found in constant expression (CD.RI"

PPL requires a constant expression (an expression without variables) when defining the size of
array dimensions. Constant expressions only allcrn,· +, -. *,I,%, (and) characters in addition
to the numbers in the expression. AU other characlers are invalid in constant expressions.
CHAR will be replaced by the invalid character from the constant expression.

•Invalid/Missing Operator in expression"

Variables, constants, functions and subexpressions need to be separated by operators. If an
operator can't be found then this error message will be displayed.

•:Invalid/Missing Variable/Constant in expression•

Variables. constants. functions and/or subexpressions are required on both sides of binary
operators. If two operators are found back to back that is an error and \\ill cause this message
to be displayed.

"Label already used (LAB.BL)•

This error message will be displayed if you use a label name twice. UBEL will be replaced
with the duplicate label.

•Label not found (LABBL)"

This error message will be displayed if you never define a label that is used in a GOTO or
GOSUB statement. LABEL will be replaced with the missing label.

•Missing label•

This error message will be displayed if a label name doesn't follow a colon (used to start a
label definition) on a line of source code.

"Mi■sing variable name(s) n

This error message will be displayed if one or more variable names don't follow a type
declaration keyword.

"Ho and found for block control statement IIF/WIIT.LB/l"OR) •

All block control structures must have matching beginning and ending statements. This
message is displayed when an end statement doesn't exist for one or more IF. WHILE or FOR
statements.

The PPL Development Kit 21

Chapter4

22

Using PPLC

•110 expra11aiou to avaluaten

This error message is displayed when an expected expression doesn't exist.
n11ot eDOUgb. argwnents paaaed (Jt:B:R) •

All statements and functions expect a certain minimum number of arguments as input. If too
few parameters are passed this message will be displayed. K will be replaced with the
statement or function (or ARRAY if the problem is with an array) that generated the error. E
will be replaced with the expected number of arguments, and R with the number of arguments
actually received.

nReaerved constant name (NANB) n

PPL has a set of reserved constant names. They are like variables that never change value. If
you ti)' to create a variable with the same name as a reserved constant this error will be
display. NAME will be replaced with the reserved constant that generated the conflict.

•'l'oo many closing paren.theaia (.BXP.R/JLRQS/LZMB) •

An open parenthesis was not found to match a closing parenthesis. The expression, argument
list or line missing the parenthesis is displayed in place of EXPRIARGSILJNE.

ntJD.abla to allocate mamozy (HSQ) • •

This is a generic error message that may or may not be displayed with a line number. If it is
displayed with a line number, the error occurred while performing a specific operation. MSG
will be one of the following: CONVERTING EXPRESSION (translating it from the human
readable source format into the PPE tokenized fonnat), LABEL DEFINITION (adding the
label to the label list maintained during the compile), or VARIALBE DECLARATION
(adding the variable to the variable list maintained during the compile).

•variable name already used (VA.II)"

This error message will be displayed if you use a variable name twice. VAR will be replaced
with the duplicate variable name.

nvariable not found (VA.II) •

This error message will be displayed if you haven't yet defined a variable that is used in an
expression or as a parameter to a statement. VAR will be replaced with the undeclared
variable name.

The PPL Development KiJ

UslngPPLC Chapter4

Compiler Exit Codes
If you build projects via batch files, make utilities. or integrated text editors with compile
options. the following exit codes (errorlevel in BAT file parlance) may prove useful:

0 This exit code is returned after a completely successful compile.

4

The PPL Dneloament Kit

Indicates that one or more warnings occurred during a compile but that the
PPE file was successfully created.

PPLC was started without a file name specified on the command line.

The file name specified could not be found.

One or more errors occurred and the compile was aborted without
generating a PPE file.

23

Chapter4 Using PPLC

24 The PPL Development Kit

5
A PPL Tutorial

A PPL Tutorial Chapters

A PPL Tutorial

Although very similar to BASIC and BAT file programming. PPL is not identical and will
take a little practice to master. Skilled programmers with prior experience should have no
problem making the transition. However, new or inexperienced programmers shouldn't feel
left out since PPL is actually quite simple. This section will take you through writing sc,·eral
programs of varying complexity and explain why each is structured the way it is. Built in PPL
constants, functions, statements. types and variables are in bold to help you identi(v those
portions of the program that you can look up in the reference section for further explanation.

"Hello, World!"
It is traditional for the first program written in a new language to display "Hello, World!" So,
being fond of tradition, we shall write that one first, and as simply as possible:

; HELLOl.PPS - "Hello, World!" Ill
; Display (print) the string and terminate with a newline
Pll'IftLII "Hello, World!.

There is it, your first PPL program! Not much. huh? However, it does teach you one
important concept, and that is that the PRJNTLN statement is used to display (or print)
information to the display (local and remote) and terminate it with a newline (carriage return
and line feed).

Same Thing Done Differently
A valuable lesson to learn early on is that there are many ways to do even the simplest things.
For example, each of the following code fragments does the exact same thing: displays "Hello.
World!" and tenninates it with a newline:

; HELLO2.PPS - "Hello, World!" 112
; This one displays it as two strings pasted together
PR'Ill'l'Lltl "Hello, "."World!"

; HELLO).PPS - "Hello, World!" 113
; Now we will display the string first without the newline,
; then print the newline with a separate command
PRDl'l' "Hello. World!.
IIBIILINB

; HELL04.PPS - "Hello, World!" 114
; Finally we will display it to the local screen first, then
; to the remote screen, with two separate statements
SPRXlr.l't.lr "Hello, World!"
IIPRXIITLH "Hello, World!"

As you can tell, each one does the same thing but in different ways. The moral of this stOI)" is:
If at first you can't do something the way you thought it should be done. look for another way
of doing it. Just about anything is possible if you look for a way to accomplish it and don't
give up after your first attempt.

The PPL Development Kil 27

Chapters

28

A PPL Tutorial

Fancy Variations
Now that we know how to display information to the screen, let's try to spice it up a little. The
first thing we can try is adding color:

; HELLOS.PPS - "Hello, World!" 115
; Display the text in color (Bright white letters on a blue background)
PRlltrrLR "@XlFHello. World!"

Notice that we were able to use the PCBoard @X code in the string just like in display files to
change the color. And. just like in display files. @X codes are automatically stripped out if
the user doesn't support color displays. But even this is still kind of plain. What would be
nice is to display the siring in the middle of the display and wait for a key to be pressed:

; HELL06.PPS - "Hello, World!" 116
; Center the text on the display
CLS ; first clear the screen and position at the upper left
NEWLINES 11 ; Move down ll lines to get to the center line
FORWllD 33 ; Move right 33 spaces to get to the correct column
FRINTLB "@XlFHello. World!"
S'l'RING s
WHILE (s = "" J LB'l' s = J:NKEY() ; Loop until a key is pressed

Still not a lot of code. but ii does things much differently than the original efforts. Now that
n-e have this. let's try to change from displaying World to the users first name. As previously
mentioned. there is more than one way of doing this. Here is an attempt that requires no user
input:

; HELLO?. PPS - "Hello, World!• #7
; CenteI" the text (with users name) on the display
S'l'RING s
'l'OltERIZB U_NAME!) ; Separate the name into words (tokens)
LB'l' s = GE'l''l'ODN(l ; Grab the first name (word or token)
LE'l' s = LEF'l'(s, 1) +LOWBR(RIGHT(s,LER(s)-1) I ; Force it to mixed case
LE'l' s = "@XlFHello, "+s+" ! " Build the complete string to display
CLS
NEWLINES 11
FORWARD (80- {LEN(s)-4) l /2 ; Move right to the correct column
PRINTLB s
LE'l' s = ""
WHILE (s = "") LE'l' s = Ill1DY()

OK, there are a couple of statements here are really deser\'e more explanation. The first is:
LET s = LEFT(s,l)+LOWER(RIGHT{s,LEN(s)-1)) ; Force it to mixed case

Let's assume that just before this lines had the value "SCOTT". Anyway. remembering that
we always evaluate from the innermost parentheses to the outermost (after substituting
variable values for variable names), here is how that expression would be evaluated:

The original statement
LET s = LEFT(s,l)+LOWER(RIGHT(s,LEN(sl-1))

Step 1: Replace instances of s with "SCOTT" (the value of s)
LET s = LEFT("SCO'l''l'",l)+LOWER(RIGHTt"SCO'l"l'",LEN("SCO'l'T")-1))

Step 2: Evaluate LEN("SCOTT"} (the innermost parentheses)
LET s = LEFT("SCOTT",l)+LOWER(RIGHT("SCOTT",5-l)J

The PPL Development Kit

A PPL Tutorial

Step 3: Evaluate 5-l
LET s = LEFT("SCOTT",l)+LOWER(RIGHT("SCOTT",4))

Step 4: Evaluate RIGHT("SCOTT",4)
LET s "' LEFT I" SCOTT". 1 I +LOWER (nCOH•)

Step 5: Evaluate LEFT("SCOTT",1)
LET s = •s•+LQWER("COTT")

Step 6: Evaluate LOWBR("COTT")
LET s :: •s•+ncott•

Step 7: Finally, evaluate "S"+"cott"J
LET s = •scott•

Step 8: Now that we have a final result, assign it to s
LB'1' a • "Scott"

Chapters

Notice how we always work from the innermost levels and evaluate them as we work our way
out? This sort of debugging can be very useful on paper when trying to find out why
something isn't working quite right.

The second statement that may not be immediately clear is:
FORWARD (80-(LEN{s)-4))/2

We've already seen the FORWARD statement used to move the cursor foward a specified
number of columns on the current line. The part that could get confusing is the expression
used to tell PPL how many columns to move the cursor. Let's break it down and sec why we
wrote it this way:

The original equation
(80- (LEN(sJ-4})/2

Step l: Find the length of s r~@xlFHello, Scott!" from our example/
(80- (17-4) J /2

Step 2: Subtract 4 from the length (to adjust for the @Xlf" color code)
(80-13)12

Step 3: Subtract 13 from the screen width (count of total spaces}
67/2

Step 4: Divide total spaces by 2 (half on one side, half on the other)
33

(Don't forget that 67n is integer arithmetic, hence the answer of 33 instead of 33.5 as we
would get with floating point arithmetic.) So, now we know how many columns to the right to
move the cursor. Not very hard at all, huh?

PPL Applications as Commands
It is possible to replace existing commands as well as create new commands with PPL.
Following are a couple of tutorials on how to implement commands. Remember. new
commands are installed in the CMD.LST file in PCBSetup: just enter the command letter or

The PPL Development Kil 19

Chapters

30

A PPL Tutorial

keyword, the minimum security level necessary to access the command, and the path and file
name of the PPE file. Optional parameters may be specified after the path and file name as
space permits. These optional parameters are accessed as tokens with the GETTOKEN
function and statement. Note that user specified parameters may also be accessed via the
GETTOKEN statement and function, but only if the SysOp doesn't specify any parameters in
the CMD.LST file (in other words. SysOp specified parameters override user specified
parameters).

Operator Page

One easy thing to replace is the operator page command. With PPL you can completely
control how long the page will last, how long each beep will be, and the time between beeps.
Let's take a look at a sample operator page module:

; OPP.A.GE. PPS - An O command (operator page) replacement

; Variable Declarations

TIIIB pTime
'l'ID sTime
'l'INB eTime

The time at which the user requested the page
The start time at which paging is allowed for all
The end time at which paging is allowed for all

:Ill'l'EGZR x Temporary storage for cursor x position
:Il!ll'l'BGBll y Temporary storage for cursor y position
:rftBGBll i Index variable for page loop
:IHTBGBR maxTries The maximum tries allowed to page the SysOp

S'l'RIIIIG msg

S'l'llIHG ynAns

S'l'RJ:RQ BEEP
S'l'RJ:IIIGI CR
S'l'RJ:IIIGI ANSI
S!l'RJ:IIIGI HOME

A variable to hold the message to be displayed
to the SysOp
A generic variable to hold a yes/no response

An ASCII beep
An ASCII carriage return
ANSI escape sequence header
ANSI home sequence

S!l'RJ:IIIGI CLREOL ANSI clear to end of line sequence

; Initializations

LB'l' pTime
LB'l' sTime
LB'l' eTime

= 'l!J:NBll
= RBM>LJ:RE(PCBDA'l'(),189)
= RBADLJ:IIBlltCBDA'l'() ,190)

LB'l' maxTries = S

LET BEEP
LB'l' CR
LET ANSI
LB'l' HOME
LB'l' CLREOL

= CBR(7J
= CRR.1131
= CIIR(271+"("
= ANSI+"O;OH•
= ANSI+"K"

Start time of the page
Read these two from the
PCBOARD.DAT file

The PPL Development Kil

A PPL Tutorlal Chapters

; Main Program

' If pagins is allowed right now or if the user has SysOp level access
J:P 11 (pTime>=sTime) & (pTime<:::eTime)) I (CDRBBC (I >=SYSOPSBC () 11 THEN

· If SysOp level access or caller hasn't already paged
IF ((CURSBC 11 >= SYSOPUC (J) I ! PAQBS'l'A'l' (J) THEN

· The user may page (either a valid time or high security level)

DISP'l'BX'l' 579, Ll'BBFORB ' Display the paging SysOp message
DJ:SP'rKX'l' 97,LDUOU ' Display the time and abort information

· Tell SysOp what to do
LBT msg = Sl'ACB(lSJ+•Press (Space) to acknowledge Page,
LB'r msg "' msg+ • (Esc) when done. "
GOSUB topLineMsg

roll i = 1 TO maxTries

Display a walking dot and beep at remote caller and SysOp
PJt.Ill'l' •."
IIPRill'l' BEEP
GOstJB localBeep

' If SysOp hi ts the space bar
II' (KIIIKBY 11 = • ") THEN

LB'1' msg = •" • Clear the SysOp message
QOSUB topLineMsg

""'" PJIGBOPP
BIii)

ENDIF

Start SysOp chat
Since we've chatted, turn off page indicator
Exit

' If user aborted page, set up to exit loop
IP (UOll'l'()) LB'l' i = maxTries+l

NEXT

' Clear the SysOp message
LB'l' msg = ••
GOBUB topLineMsg

' If user aborted page
:rp (ABOll'l' (I l THEN

RBSB'l'DJ:SP ' Reset the display so more info may be displayed
NBWLIIIIB send a newline
BIID Exit

ELSE Otherwise a newline is sufficient
ENOIF

ENDIF

ENDIF

' The user shouldn't be allowed to page (or page not successful), so
PAUOIII ' Turn on paged indicator

DJ:Sl''l'BXT 128,Ll"BB1'0ltB+IIBNLID · SysOp not available

LB'l' ynAns :a: HOCDR() • Default to no
PltOIIPrS'l'R 571,ynAns, 1, "", YBSIIO+IIBWLJ:NB+Ll'Arl!D+l'IBLDLBH+UPCASB

The PPL DePelopment Kit 3/

Chapters A PPL Tutorial

l'.P (ynAns = Y.ISCDa()I DDS'l'UPI" "C·+CR+"Y"+CR ' If yes do a comment

BIii)

: topLineMsg Clear the top line of the BBS screen and display a message

LB'l' x "' GffX (l -1 Save the cursor position
LB'l' y "' GBft'tl-1

SPRUR HOME,CLREOL Pos in upper left of display and clear the line

SPR?.trr msg Display message to the SysOp

SPRUIT ANSI+S'rRIRG(y)+•;•+ffRIRG(x)+"H· Restore original position

RJ!TtJRII

: localBeep

SOtJIID> 110
DBLA.Y 2
SOUHD220
DBLI.Y 2
SOtJlrD>440
DELAY 2
SOUHD880
DELAY 2 •= 0
DELAY 10

UTtJRII

' Return to the calling routine

Routine to alert the SysOp (not the caller)

Sound a 110 hertz tone locally
Pause for a couple of clock ticks
Sound a 220 hertz tone locally
Pause for a couple of clock ticks
Sound a 440 hertz tone locally
Pause for a couple of clock ticks
Sound a 880 hertz tone locally
Pause for a couple of clock ticks
Turn off the speaker
Pause for the remainder of the clock ticks

Return to the calling routine

This PPL application functions almost identically to the built in operator page command. It
really only does three major things differently. The first is the length of the page. PCBoard's
built in O command waits for thirty seconds (fifteen beeps at two seconds between beeps) for
the SysOp to respond. This PPE implements a variable length page which is initialized to five
tries by default (the length of each try depends on the loca!Beep subroutine). It can easily be
changed by just changing the value masTries is initialized to. For example:

LB'l' maxTries = 15

This line, used instead of the default in the listing above, will change the operator page PPE to
try to page the SysOp fifteen times Oust like the default O command). The second major
difference is way it pages the SysOp. PCBoard uses a standard beep every two seconds when
paging the SysOp. This PPL program will sound a custom alarm sound once per page
attempt. Since the default localBeep subroutine takes about a second, our PPE will attempt
paging the SysOp for about 5 seconds. Again, you could change that rewriting the loca!Beep
routine to make different sounds and/or to use different delays. As an example:

: localBeep Routine to alert the SysOp (not the caller)

Sl'RIN'l' BEEP Beep at the SysOp
DELAY 36 Wait for approximately two seconds

32 The PPL Development Kil

A PPL Tutorial Chapter5

....... Return to the calling routine

Again, with this change we are more like the built in O command in that we will beep at the
SysOp once every two seconds. Finally, the third major difference is who is allowed to page
the SysOp. Nonnally the SysOp may be paged during a certain set of hours, but only if the
page bell is on. This PPE file ignores the page bell on/off status (since it is easily forgotten or
accidentally changed when setting things up) and allows all to page the SysOp during the page
window. Also, normally the O command is an all or none proposition; that is, everyone can
page during the defined times and no one can page any other time. This PPE allows everyone
to page during the defined times, and it allows users with SysOp level access (as defined in
PCBSetup) to page anytime! Nifty, huh? Analysis of the code should explain just about
everything else that is going on (of course, you will probably want to refer to the reference
section if you find a statement or function that you don't understand).

Start
PPL is not limited to replacing existing commands. You can also create new commands with
it. The following is the source code to the ST ART command (used on the Salt Air BBS to give
SysOps information necessa,y to start BETA testing software):

; START. PPS - A new command used to start BETA testing PCBoard

; variables

l:111'1"BGB1l minSec ' The minimum security required to BETA test
S'rRl:IIGI CR ' A carriage return

; Initializations

LB'1' minSec = 20
LB'1' CR = CBR(l3)

; Main Program

• If the user doesn't have current support
z• (CURSBC(l < minsecl THEN

Dl:SPFl:LB PPBPATB(J +"SBAD" ,CDIAPB+SBC+LAIIQ Display information file
BllD Exit PPE

ENDIF

D'ISP.'ILB •l'Bl'A'l'B(I +"SOK" ,ORAPB+SBC+LIUIQ Display information file

' If the user isn't in conference 6 force them to join
'I• ICUltCOllr() <> 6) DDH'U'FP "J 6 NS"+CR

' Force them to read messages pertaining to the start of the BETA test
DDS'l'tlJ'P "R O 61977+"+CR

The PPL Deve/op,,,,,nt Kil 33

Chapters A PPL Tutorial

This is a very simple (but useful) PPL application. To sum things up: first the users security
level is tested. If it is less than our minimum required security level to BETA test, we display
a file to the user (that could have graphics, security, and/or language specific variants) and
exit. Otherwise we display a file with information to the caller on starting the BETA test. If
they are not in conference 6 (the BETA conference on Salt Air) we stuff a command to join 6
into the keyboard buffer, and then we force them to start reading messages that have some
additional information. It is as simple as that!

PPL Applications as Script Questionnaires

34

Very powerful script questionnaires can be written with PPL. To install a PPE file as a script
questionnaire. just enter the name of the PPE file (including the extension) in the SCRIPT
field of the SCRIPT.LST file. Herc is an example of what a PPL based script might look like:

; ORDER. PPS - A script questionnaire to order a product

; Variable Declarations

S'rRilfG Question · The question to ask the user
S'rRilfG Answer • The users answer

; Main Program

• Display the script header
NBWLUIB
PRJ:N'l'L!f "@XOF- - - - - - - - - - - - - - -- -- - - - - - -- - - - - - - - - - - - - - - - - -- -- -- -- -- -- •
PRIH'l'L!f •we have several items available for sale. From•
PRIH'l'L!f •Hardware to software, we have products that fit your"
PRIH'l'LH ·needs and wants. If we don't have it, just ask!"
PRJ:NTLII • - - - -- - - - -- - - - -- - - - - - -- -- - -- -- -- - - - - -- - - -- -- -- -- - - - - - - •
IIBWLXHB

Confirm that the user wants to answer the questionnaire
LB'r Answer = IIOCRAR.()
PllOIIP'rS'rR 84, Answer, 1, "", YESJIO+UPCASB+FIBLDLBIJ
NBWLXHB

If user answers other than affirmative then stop script
J:F (Answer <> YBSCIIAR.()) S'1'0P

JIBWLJ:ft Display a blank line for spacing

' List products available to the user
UIH'l'LII "@XOFWe have the following products available for sale:•
IIBWLXIIB
PRIH'l'LII " 1. Complete 80486 system with SVGA video system ($1000 US)"
PRJ:ll'l'LII ' 2. Whiz-bang hard-drive ($500 Australian)"
PRJ:ll'l'LII ' 3. Plain paper bag software ($5 Monopoly)"

· Ask the user which product
LB'r Question : "Which item would you like to order?•
QOSOB ask

The PPL Development Kil

A PPL Tutorial

' List shipping options available
PRIN'l'LII "€!XOFYou may choose from the available shipping options:"
IIBWLZBK
PRJ:NTLII " 1. U.S. Mail"
•RIIITLII " 2. United Parcel Service"
Pllilr.l'LII ' 3. Federal Express"

· Ask the user how to ship
LB'1' Question = "How would you like it shipped?"
GOSUB ask

' List payment options available
PRilll'l'LIII "@XOFYou have the following payment options:"
PRJ:ltil'l'LII ' 1. Visa"
PRIN'l'LN ' 2. Mastercard"
PRIIITLII " 3. American Express"
PRill'l'Llf • 4. Discover"
PRINTLII " 5. COD"

· Ask the user how he wants to pay
LET Question = "How would you like to pay?"
GOSUB ask

Confirm that the user wants to save his answers
LB'1' Answer = NOCBIUt (I
INPU'l'YH "Do you want to save your answers (ENTER=noJ ",Answer,@XOE
RBWLZIIB

' If user answers other than affirmative then stop script
J:I' (Answer <> YBSCRAR(l) S!l'OE'

IIBWLUJB ' Display a blank line for spacing
BRD · Exit script

:ask · Subroutine to ask questions and store answers

IIBWLZIIB
E'Rill'l'LII "GXOEft, Question
LB'l' Answer "' ft "

' A blank line for spacing
• Display the question
• Initialize answer to empty

Chapters

IHPtJ'l' " " , Answer
IIBWLIIIIBS 2

· Get answer with no prompt on line

LB'l' Question = S'l'RIE'A'l'X(Questionl
l'E'O'l'LII O, ftQ: ",Question
l'E'tJ'l'LII O, ·A: ",Answer

· A couple of newlines for formatting

Remove @X codes from question
Write the question to the file
Write the answer to the file

Return to the caller

There are several items of interest in this program. The first is the use of file channel O in the
ask subroutine without ever opening that channel. When a PPE file is installed as a script
questionnaire, PPL automatically opens channel O in write mode for append access to the
answer file. This way your application need not know the name of the answer file; all it needs
to know is that channel O is where it's output should go. The second item of interest is the
STOP statement. Normally the END statement would be used to exit a program (and commit

The PPL Development Kit 35

Chapter 5 A PPL Tutorial

all infonnation to the answer file in the case of a script questionnaire). STOP may be used to
end script questionnaire processing and abort writing information to the answer file. Finally,
the ask subroutine itsel[This routine is used to ask all questions that should be written to the
answer file and to perform the actual writing of information. Because we've used the single
routine we can ask all questions and log them to the answer file in a consistent manner.
Additionally. by not having to write the routine three (or more) times (once per question)
we've saved ourselves sixteen lines of code and avoided the possibility of introducing bugs by
not making changes to all three copies (when necessary) at the same time or in the same way.

PPL Applications as PCBTEXT Display Prompts

36

Compiled PPL applications may be attached to PCBTEXT display prompts. This may be done
to change the way in which a question is asked (or whether it is asked at all) or to provide
extra infonnation that would not normally be available. To install a prompt replacement PPE,
use MKPCBTXT to edit your PCBTEXT file. Select the prompt to replace and enter an
exclamation mark in column one, followed immediately by the path and file name (including
extension) of the PPE file. Optional parameters may be specified after the path and file name
as space permits. These optional parameters are accessed as tokens with the GETTOKEN
function and statement.

Password Expiration Warning
PCBoard 15.0 has enhanced password support. One of the features of the new password
system is the ability to set an expiration date for a users password. When this is done the user
will be warned a certain number of days before the password expires that they will need to
change their password soon. This is done to give them an opportunity to change it before it
becomes mandatory. Prompt 711 in the PCBTEXT file is displayed during the warning period
to them. Unfortunately. if a user is calling in via a script and isn't there to see the one line
prompt on screen, he will never know about the impending password expiration until it has
already expired. This PPE file attempts to remedy that by sending the user a message in
addition to the prompt:

; PWRDWA.RN.PPS - A replacement for prompt 711 in the PCBTEXT file
to warn the user about impending password expiration
failure both on screen and via a message

; Variable Declarations

J:lr.l"EGER conf
S'l'RJ:NG to
S'l'RJ:lfG from
S'l'RJ:NG subj
S'l'RJ:NG msec
DA'l'B pack
BOOLBIUf rr
BOOLBIUf echo

The conference in which to post the message
The user to send the message to
The user the message is from
The subject of the message
The security of the message
The pack out date of the message
Return receipt flag
Network echo flag

The PPL Development Kil

A PPL Tutorial Chapter 5

S'l'R:DJG file · The file with the message text

; Initializations

LB'l' conf "'CORCOWF(J
LB'l' to
LBT from = "SYSTEM DAEMON"
LB'l' subj = "Password Expiration"
LE'l' msec = "R"
LE'l' pack = DA'l'B()+3
LB'1' rr = PAI.SB
Lil!!' echo = :l'ALSB
LB'l" file a: Pl'BPADt)+PPBRAIIBll+'.MSG"

; Main Program

Post message in the current. conf
Default to the user online
Any 'user' may leave the message
The subject of the message
Receiver only message
Pack it out in 3 days
No return receipt requested
No need to echo this message
Path and file name of message

' First we need to tell the caller on screen
PRJ:NT "Your password will expire in @OPTEXT@ days.
PRJ:IITLR "Use the (W) command to change it."

Now let· s leave the caller a message. ~-.le do this in case he is
' calling in an automated fashion (via script) and won't see the on
' screen warning. This way the user will still be notified (if he
' downloads and reads mail) that his password will soon expire.

NBSSAGB conf, to, from, subj ,msec,pack, rr, echo, file

This is a very simple application. Because we've replaced the prompt with the PPE. we go
ahead and display the original default prompt so that we remain compatible. Then we
generate a message for the user with basically the same information. Hopefully he will see this
message just in case he doesn't see the on screen prompt.

Logon Language Prompt

One of the biggest concerns of adding any new feature is that it breaks compatibility. Of
course, breaking compatibility can't be the only reason to decide not to add something. but it
should be weighed carefully against the benefits. On the Salt Air BBS we had ne\"er used the
multi-lingual capabilities for the support board. (Don't worry, we've tested them extensivel)·
on our in-house test systems!) With all of the new abilities of PPL. we wanted tu add some
highly customized prompts to assist us (and our SysOps) in tech support. At the same time.
we didn't want to break everyones scripts. So we created two languages. one with the custom
prompts and one with the standard prompts. Now people can select the one they want. The
only remaining problem was that the language selection prompt might break peoples scripts
(since we weren't using it before). So what we did was add a PPE to the language selection
prompt that would time out after 20 seconds. This way we can have multiple languages and
keep everybody happy without breaking scripts. (A lot of explanation for such a simple PPE,
huh?)

The PPL Development Kit 37

Chapter 5

38

A PPL Tutorial

LANGUAGE. PPS - A replacement for prompt 387 in the PCBTEXT file
to prompt for the desired language with a 20 second
timeout if the user doesn't respond (just in case the
user is automated we don't want to break their script)

; Variable Declarations

S'l'RJ:IIGI prompt A variable to hold the language question
S'l'RJ:NG lang_ansr A variable to hold the users response

S'l'RJ:HG CR A carriage return character

; Initializations

LB'l' prompt = "Enter Language # to use (enter) :::no change"

LB'l' CR = CBR!l31

; Main Program

' Ask the user what language they want to use
IRPU'l'S'l'R prompt. lang_ansr, @X07, 2, DSK_NUM() , LFAl''l'Ell+AtJ'l'O

' If the user didn't answer the question (empty response)
IP (LANG_ANSR = ' " J THEN

· We need to stuff the keyboard buffer with a CR so that
' PCBoard won't ask a second question (without a prompt)
KBDSTOl"P CR

ELSE

' Otherwise we just need to stuff the answer so that PCBoard
' knows that the PPE asked the question and got the answer
KBDSTOl"P lang_ansr

ENDIF

"""
An important point must be made here. If you want your PPE to get the input for the prompt
and pass it to PCBoard, you must stuff the response into the keyboard buffer. Ifno response is
required or desired then you should simply stuff a carriage return (CHR(i3)) as we did above.
If you want PCBoard to go ahead and ask the question, then you will need to print a prompt
before exiting the PPE so that the user will know that a response is expected (and what the
response should be).

The PPL Development Kit

A PPL Tutorial Chapter 5

PPL Applications in Display Files
For those times that you need really precise control of what the user is seeing you can embed a
PPE within a display file. To do this simply include a line with an exc1amation mark in
column one, followed immediately by the path and file name (and extension) of the PPE file.
Optional parameters may be specified after the file name. However, nothing else should be on
the line after the file name or parameters. Here are a couple of examples of what you might
use a PPE within a display file for.

Node Specific Display Files
We sometimes have a need to display a file to callers on a particular node (for example. our
extended support nodes). However, we still want to display the standard news to them as well,
and we don't want to have to maintain a separate NEWS file for each node (all we want to do
is maintain the differences). With this PPL application we can force the NEWS file (or any
display file) to display an additional, node specific file at a particular point:

NODEFILE.PPS - A PPE to be used from any display file.
By default display files can have security, graphics,
and language specific variants. This PPE allows the
addition of node specific variants while continuing to
allow the other variations that are shared among all
nodes.

; variable Declarations

Snl:IIQ file

; Main Program

• If no parameter was passed then exit
:tr ('l'OltCOUm'(J :a OJ DD

' The file we are looking for is tokenized from the command line and has
' a ### extension (ill# is the node number)

LB'l' file :a QB'l"l'ODNl)+"."+I\IQB'l'("00"+S'l'llIIIIGIPCBIIIODB()),3)

' If the node specific news file exists. display it
' (security/graphics/languages variants aren't allowed because we use
' the file extension to indicate the node the file should be used for)
IP IBXIS'l'(file) l DISl'FILB file,DBl'S

BIID ' Exit

Interactive Welcome Screens
Though ANSI animated displays can go a long way to improving the look and feel of your
BBS, they come with a cost: they are large. In fact, many people don't use them just because
of the time involved in the transmission (especially to 2400 bps callers). However, there is a

The PPL Dev,/opmt1nt Kit 39

Chapters

40

A PPL Tutorial

way around this with PPL. We can write a program that will display a file to the caller in
'pieces' while prompting for input from the caller. After each 'piece' it will check to see if the
user has hit a key and act on it as needed. If no key was pressed, it will display the next piece
and check for keys again.

WELFIRST.PPS - A PPE to be used in a WELCOMEG file.
Because of the time required to display ANSI animation
to low speed callers it is usually avoided. However,
this PPL allows you to send a long ANSI animation file
in pieces while waiting for the user to enter his
first name. WARNING! Do not use in a WELCOME file,
only WELCOMEG or WELCOMER, as it assumes ANSI graphics
are available.

; Variable Declarations

BOOLUIII exitflag

ZH'l'BGBll X
ZH'l'BGBll y
ZH'l'BGBll C

S'l'RIIIG fn
S'1'1lIIIG s

S'l!Rill'G file
8'1'RIIIG line

ftRIIIG BS
S'1'RIIIG CR

Flag to determine when we should exit

Last colwnn position of cursor
Last row position of cursor
Last color used

The first name of the user
· A miscellaneous string variable

· The ANSI animation file to display
• The ANSI animation line to display

• An ASCII backspace character
• An ASCII carriage return character

,
; Initializations

LB'l' BS = CBR(8) • Backspace
LB'l' CR = CBR(l3) ' Carriage return

,
: Main Program

Ir l'l'OKCOOJITII = 01 BHD If a file wasn"t specified, exit

LB'l' file = QB.'1"1'0DB() Get the path and file name to display
IF (!BXJ:ft(file)) BND If the file doesn"t exist, exit

FOPIDI l,file,O_RD,S_DII Open channel 1 for read/deny none access

AIISJ:POS 1,23 Position on the bottom line of the display
PllIIIT "0XOEWhat is your first name? • ' and display the prompt

• While the user hasn't exited and no file errors have occurred .
wan.a (!exit flag &. !DRll(ll J DO

PGft l, line
PKIIIT line

Get a line to display
' Display it

The PPL Development Kit

A PPL Tutorial Chapter 5

LB'l' x ""OBTXII Save the cursor position
LB'1' y = GB'l'Y(I
LB!!' c = ctnlCOLOR (l Save the current color

AIISIPOS 1,23 Position at the bottom of the display
PR:Ul'l' "iXOEWhat is your first name? " ' and display the prompt

DBPCOLOII

LB'l' s = INDY(J

Change to the system default color

Get a keypress from the user

IP (Is>: "I & (s <= •-"l & (LBlf(fnl < SOJ) THEN

' If it's ASCII append it
LB!'fn=fn+s

ELSEIF I (s == BS) & (LBll!fn) > 0) I THEN

' If it's a backspace remove the last character
LB'1' En = LBl"r(fn,LBll(fn)-ll

ELSEIF (s """ CR) THEN

• If it's a carriage return append it and prepare to exit
LBTfn=fn+s
LS'1' exit flag = 'l'RU!I

ENOIF

n:nrr fn, • ", BS Display the first name

AIISI~OS x,y Restore the last cursor position
COLOR c Restore the last color

ENDWHILE

PCLOSB 1 ' Close the file

• If we exited due to a file error and not a carriage return
IP (!exitflag) THEN

AIISIPOS 1.23
DUCOLOR
CLRBOL

DDS'l'Off fn

Position at the bottom of the display
Change to the system default color
Clear to the end of the line

Stuff the name into the keyboard buffer for INPUTSTR

LB'l' s = "What is your first name" ' Initialize the prompt
LB'l' fn = "~ ' Clear out the first name

IIIPU'l'S'l'll s,fn,@XOE,50,DSlt_ASCII(J,DBPS Finish getting the name
LB'l' fn = fn + CR ' Append a CR to the end

ENDIF

CLS ' Clear the screen
DDSTUl'P fn • Stuff the first name into the keyboard buffer

DD ' Exit the PPE file

Tit, PPL Development Kit 41

Chapters A PPL Tutorial

The main WHILE loop is actually quite simple once you understand what it is doing. First,
read a line from the ANSI display file and print it to the screen. Second, save the last cursor
position and color and display the first name prompt. Third, get a keystroke (if available) and
process it (either add it to the string. remove the last character from the string if a backspace,
or add it to the string and set the exit flag if a carriage return). Fourth, display the name with
any changes since the last display. Finally, loop back up to the top and keep doing these four
steps until the user hits enter or we reach the end of the file. The file that is being displayed
should not have any single line longer than 256 characters. Most ANSI drawing and
animation programs allow you to specify the maximum line length to save. A short line length
(such as 32) will slow down display of the animation but will check the keyboard and serial
port more often. A longer line length will speed up the display but will give the user fewer
opportunities to enter his name.

PPL Applications as Display Menus

42

Finally, you can replace menu files (such as BRDM, DOORS, DIR, etc.) with PPE files. To do
this simply create a PPE file with the same name as the menu to replace and store it in the
same directory as the main menu file. PCBoard will automatically find it and use it. Here is a
sample PPL based menu for a DOORS listing:

; DOORS. PPS - A PPE to be used in place of the DOORS menu file,
This PPL application is designed to provide a hot key
interface to door selection.

; variable Declarations

BOOLUR exitflag

IH'l'BGBR i
:nrrBGBR X
J:H'l'BGBR y
J:ll'l'BGBR off

S'l'RJ:WG name (2 5)
S'l'RJ:WG char())
S'l'RJ:RG key
S'rRIHQ CR

Flag to indicate when to exit the PPE

A miscellaneous index variable
The cursor colwnn to display the whirly-gig
The cursor row to display the whirly-gig
The offset of the whirly-gig in char array

A list of door names
An array of whirly-gig animation
The users keypress
An ASCII carriage return character

,***"***************************

; Initializations

LB'l' exit flag = FALSE

roai=OT04
LB'l' name(il = ·oooR·+sTRING(iJ

NEXT
FOR i = 5 TO 25

LB'l' namelil
NEXT

These should be initialized to the
actual door names or nothing (• •)
for that letter to abort the PPE
menu

' NOTE that A = 0, B = 1. etc, Z : 25

The PPL Development Kit

A PPL Tutorial Chapter 5

LB'l' char(O) "/"
LB'l' char(l)
L&'l' char{2) "\"
LB'l' char()) "I"
LB'l' CR = Cllll(l)J

; Main Program

DBFCOLOR. ' Change to the system default and clear the screen
CLS

' Display the PPE display file (base name + alternates)
DJ:SPl'J:LB ••s•A'1'B (I +MtBIIUIB (J , SBC+GRUB+LAlfG

' Display the prompt
l'ltBSBLJ:ft
PRJ:11'1' "@X09Hit key to select door:
LB'l' X = GB'l'X(J
LB'l' y = QB'l'r()

11BILB I !exit flag) DO

AIISIPOS x,y Position the cursor in the whirly-gig spot
DBLAY 2 ' Wait for a couple of clock ticks
PJI.J:11'1' char(offl41 · Display the current stage of whirly-gig animation
J:IJC off · Update off for the next stage of whirly-gig

LB!!' key = 1Jlll'Blt.(IHDY(J l Get the users keypress

· If the user pressed a hot key .
IP I (key >: "A") & (key <: "Z")) THEN

LB'1' exitflag = 'l'Rtnl Get ready to exit
DDBTUJ'I' name(ASC(key)-ASC("A"l)+CR Stuff the door name and a CR

ELSEIF (key <> "" J
LIW exit flag :: '1"RtJB Get ready to exit
DDSTUJ'P CR Stuff CR to abort door prompt

ENDIF

ENDWHILE

This PPL application is set up to provide a hot key interface for selecting a door. Note that we
must initialize the list of door commands available up above (the STRING array n~me). Then
ifwe hit a key (A-Z) that is assigned to a door, that door will be instantly selected. Othemise.
the PPE will simply exit (automatically hitting enter for the door name prompt to get past it).

The PPL Development Kit

Chapters A PPL Tutorial

44 The PPL Development Kil

6
PPL Structure

PPL Structure Chapter&

PPL Structure

Basics
A PPL program is created by a programmer with a standard text editor. Each line consists of
standard ASCII text (up to 2048 characters long) terminated with a carriage return/line feed
pair. Character case is not significant except in literal text strings. Three types of lines are
recognized by the compiler: comment lines, variable declaration statements and code
statements.

Comments
Comments are used by the PPL programmer to make notes in the source code about what the
code is supposed to do and generally clarify things so that code maintenance is easier. They
are completely ignored by the PPL compiler so they may contain any text desired. A comment
may be on a line all by itself or at the end of a line after a valid statement. A blank line is
considered a comment. Any text following a quote character (') or semi-colon (:) is also a
comment. The following are all valid comments:

; This is a comment line
STRING buf, str, ssNum This is a comment too

' The blank line above this (as well as these
' lines) are all comments
CLS ; Yet *ANOTHER* comment!

Variable Declaration Statements
Variable declaration statements must start with a keyword denoting the variable type. Valid
type keywords are BOOLEAN, DATE, INTEGER. MONEY, STRING and TIME. The
keyword must be followed by one or more valid variable names (or array declarations) which
should be separated by commas(,). A valid variable name must start with a letter (A-Z) and
may contain letters, numbers (0-9) and the underscore character (_). Any number of
characters may be used but only the first 32 will be recognized by PPL. If the variable is an
array then the name should be followed by an open parenthesis[(], one. two or three constant
subscript expressions (separated by commas), and finally a closing parenthesis [)]. Here are
some examples:

BOOLEAN adultFlag
DATE this_IS_a_VARIABLE_to_HOLD_todays_DATE
; Only this_IS_a_VARIALBE_to_HOLD_today is significant
INTEGER age
MONEY prices(2.Sl
STRING buf, labels (10 I • ssNum
TIME start, stop

Th, PPL Dnaopment Kit 47

Chapter&

48

PPL Structure

Code Statements
Code declaration statements must start with a keyword indicating the operation or process to
be perfonned. There is one exception to this rule, however, and that is the LET statement. If
no keyword is found at the beginning of a line, a LET statement is implied and the rest of the
line should follow the fonnat:

VAR = EXPRESSION

There are many statements defined in PPL and it is beyond the scope of this part of the manual
to cover the precise syntax for each and every one of them. Simply put, a statement takes zero,
one or more expressions (see Expressions later in this section) and/or variable names (see
Variable Declaration Statements) as arguments (separated by commas), does something. using
any passed expressions and/or variables, and assigning new values, as needed. to passed
variables. Here are a few sample statements:

This statement clears the screen and takes no arguments
CLS

Evaluates the single expression and assigns the result to ans
LET ans = 5+4*3/2-1

; Evaluates all three (could be more, could be less) expressions (two of
; which have only one term) and prints them in order, following them
; with a carriage return
PRINTLN "The answer •+" is ", STRING(ans), •. •

; Evaluate the expression on the left, display it, then get a string
: from the user and assign it to the variable name on the left
INPUT "What is "'+•your age" ,current_Age

Here h rd aret eva 1 statements acceot ed. PPL m source code :
ADJTIME DISPSTR GOODBYE MPRINT RESTSCRN
ANSIPOS DISPTEXT GOSUB MPRINTLN RETURN
BACKUP DOINTR GOTO NEWLINE SAVESCRN

BLT DTROFF HANGUP NEWLINES SENDMODEM
BROADCAST DTRON IF NEWPWD SHELL

BYE ELSE INC NEXT SHOWOFF
CALL ELSEIF INPUT OPENCAP SHOWON

CDCHKOFF END INPUTCC OPTEXT SOUND
CDCHKON ENDIF INPUTDATE PA.GEOFF SPRINT

CHAT ENDWHILE INPUTINT PAGEON SPRINTLN
CLOSECAP FAPPENO INPUTMONEY POKEB STARTDISP

CLREOL FCLOSE INPUTSTR POKEDW STOP
CLS FCREATE INPUTTEXT POKEW TOKENIZE

COLOR FGET INPUTTIME POP VARADDR
CONFFLAG FOPEN INPUTYN PRINT VAROFF

CONFUNFLAG FOR JOIN PRINTLN VARSEG
DBGLEVEL FORWARD KBDCHKOFF PROMPTSTR WAIT

DEC FPUT KBDCHKON PUSH WAITFOR
DEFCOLOR FPUTLN KBDFILE PUTUSER WHILE

DELAY FPUTPAD KBDSTUFF QUEST WRUNET
DELETE FRESHLINE LET RDUNET WRUSYS

DELUSER FRE~IIND LOG RDUSYS
OIR GETTOKEN MESSAGE RENAME

DISPFILE GETUSER MORE RESETDISP

The PPL Development Kit

PPL Structure Chapter&

Expressions
An expression in PPL can take just about any form imaginable. It consists of one or more
constants, variables (see Variable Declaration Statements). functions (which take zero, one or
more arguments). or sub-expressions, all of which are separated by PPL operators. Although
most statements and functions in PPL expect expressions of a specific type as arguments, you
need not pass it an expression of the correct type; PPL will automatically conven from one
type to another when it needs to. Here are a few sample expressions:

' Define a few variables to hold expression results
INTEGER i, j, k
STRING s, t, u

' Single term expressions
' (All expressions here are to the right of the =)
LET i = 2
LET j "" 3
LETk=4
LET s = "STRING 6

' Complex expressions
LET i = i*j*k+2*i+3*j+k/2-5
LET j ""i*j•(k+21*(i+3)'"(j+k)/12-5J
LET k"' (RANDOM(S)+l)*S+ABS(j)
LET t "' CHR(il256J
LET u "' S+" ~+t

Constants
PPL supports both user defined constants and pre-defined constants. User defined constants
may be any of the following:

$#.## A MONEY constant (dollar sign followed by optional dollars followed by
decimal point followed by cents; # = 0-9)

##h

##d

##o

##b

+/-##

"X"

@X##

The PPL Development Kil

An INTEGER hexadecimal constant (a decimal digit followed by zero.
one or more hexadecimal digits followed by an H; # = 0-9 & A-F)

An INTEGER decimal constant (one or more decimal digits follo\\'"ed by a
D; #=0-9)

An INTEGER octal constant (one or more octal digits followed by an O:
#=0-7)

An INTEGER binary constant (one or more binary digits followed by a B;
#=0-1)

An INTEGER constant (an optional plus or minus sign followed by one or
more decimal digits; # = 0-9)

A STRING constant (a double quote followed by displayable text followed
by another double quote; X = any displayable text)

An INTEGER @X constant (a commercial at sign f~llowed by an X
followed by two hexadecimal digits: # = 0-9 & A-F)

49

Chapter&

50

PPL Structure

The following predefined constant labels are also available. Their values and uses will be
defined in the PPL Reference section

AUTO
BELL
DEFS

ECHODOTS
ERASELINE

FALSE
FCL

FIELDLEN

Functions

FNS
F_EXP
F_MW

F_REG
F_SEL
F_SYS
GRAPH
GUIDE

HIGHASCII
LANG

LFAFTER
LFBEFORE

LOGIT
LOGITLEFT

NC
NEWLINE

NOCLEAR
O_RD
O_RW
O_WR
SEC

STACKED
S_DB
S ON

S_DR
s_ow
TRUE

UPCASE
WORDWRAP

YESNO

PPL suppons many functions which may be used by the programmer in expressions. Here is a
list of valid PPL functions. As with the predefined constants. their return values and uses will
be documented in the PPL Reference section

ABORT HELPPATH MONTH REGOS U_BDL
ABS HOUR NOCHAR REGDX U_BDLDAY
AND I2S NOT REGES U_BUL

ANSION INKEY ONLOCAL REGF U_FDL
ASC INSTR OR REGS! U_FUL
B2W KINKEY PAGESTAT REPLACE U_INCONF

CALLID LANGEXT PCBDAT RIGHT U_LDATE
CALLNUM LEFT PCBNODE• RTRIM U_LDIR
CARRIER LEN PEEKB S2I U_LOGONS
CCTYPE LOGGEDON PEEKDW SCRTEXT U_LTIME

COON LOWER PEEKW SEC U_MSGRD
CHR LTRIM PPENAME SHOWSTAT U_MSGWR

CURCOLOR MASK_ALNUM PPEPATH SLPATH U_NAME
CURCONF MASK_ALPHA PSA SPACE U_PWDHIST
CURSEC MASK_ASCII RANDOM STRING U_PWDLC

DATE MASK_FILE READLINE STRIP U_PWDTC
DAY MASK_NUM REGAH STRIPATX U_RECNUM

DBGLEVEL MASK_PATH REGAL SYSOPSEC U_STAT
DEFCOLOR MASK_PWD REGAX TEMPPATH U_TIMEON

DOW MAXNODE REGBH TIME VALCC
EXIST MGETBYTE REGBL TIMEAP VALDATE
FERR MID REGBX TOKCOUNT VALTIME

FILEINF MIN REGCF TOKENSTR VER
FMTCC MINKEY REGCH TRIM XOR

GETENV MINLEFT REGCL UPPER YEAR
GETTOKEN MINON REGCX UN_CITY YESCHAR

GETX MKADDR REGDH UN_NAME
GETY MKDATE REGDI UN_OPER

GRAFMQDE MODEM REGDL UN_STAT

Sub-Expressions
A sub-expression is simply any valid PPL expression surrounded by parentheses. For
example, this is an expression:

7+6-5'"4/312

To make it into a sub-expression, surround it with parentheses like this:
(7+6-5'"4/3\2)

The PPL Development Kil

PPL Structure Chapter&

This sub-expression could be used in yet another expression:
PRINTLN 2*(7+6-5•4/31\l)*RANDOM(4)

Operators
PPL supports a full set of operators in addition to the functions listed previously. They are:

Operator Function

The PPL Development Kil

Starts a sub-expression; requires a) to terminate
Example: J*(2+1J (resultis9.not7)

Ends a sub-expression
Example: J• t2•1J (result is 9, not 7)

Returns the result of raising a number to a specified power
ExpeclS and returns type INTEGER
Example: ,., (result is 9)

Returns the product of two numbers
Expects and returns type INTEGER
Example: ,., (result is 6)

Returns the quotient of two numbers
Expects and returns type INTEGER
Example: 9/4 (result is 2)

Returns the remainder of two numbers
Expects and returns type INTEGER
Example: 9%4 (result is 1)

Returns the sum of two numbers or a string concatenated to another
Expects and returns type INTEGER or STRING
Example: 1+2 (result is 3)
Example: ·string plus ·+·string" (result is "String plus String")

Returns the difference between two numbers
Expects and returns type INTEGER
Example: J-2 (result is 1)

Returns TRUE if two values are equal
Expects any type; returns type BOOLEAN
Example: , • , (result is TRUE)
Example: "String" = "STRING" (result is FALSE)

Returns TRUE if two values are not equal
Expects any type: returns type BOOLEAN
Example: , <> , (result is FALSE)
Example: •string" <> "STRING" (result is TRUE)

51

Chapter&

52

&

Rel urns TRUE if a value is less than another
Expects any type; returns type BOOLEAN
Example; 2 , , (result is TRUE)
Example: "STRING" < ·sTRING" (result is FALSE)

Returns TRUE if a value is less than or equal to another
Expects any type; returns type BOOLEAN
Example; 2 ,. , (result is TRUE)
Example: ·sTRING" <= "STRING" (result is TRUE)

Returns TRUE if a value is greater than another
Expects any type; returns type BOOLEAN
Example: 2 , , (result is FALSE)
Example: "STRING" > ·sTRING" (result is FALSE)

PPL Structure

Returns TRUE if a value is greater than or equal to another
Expects any type; returns type BOOLEAN
Example: 2 ,. 3 (result is FALSE)
Example: "STRING" >• "STRING" (result is TRUE)

Returns the logical not of a BOOLEAN value
Expects and returns type BOOLEAN
Example: !TRUE (result is FALSE)

Returns the logical and of two BOOLEAN values
Expects and returns type BOOLEAN
Example: TRUE " FALSE (result is FALSE)

Returns the logical or of two BOOLEAN values
Expects and returns type BOOLEAN
Example: TRUE I FALSE (result is TRUE)

PPL operators have a precedence between one and six that determines which operators get
processed first. A precedence of one gets processed first, six gets processed last.

Precedence Operators

<> < <= > >=

& I
Binary operators expect both the left and right operands to be of the same type. If they are not
then appropriate type conversions will be perfonned automatically.

The PPL Development Kit

7
PPL Reference

PPL Reference Chapter 7

PPL Reference

Lists by Type
PPL is composed of basically five different token types. They are constants. functions.
statements, types, and variables.

Constant List
;cc-=•"uT"'o,--,---,,ccN,cS--,--,H,.,-IG""H""A7SC"I"'I-,-~NO~C~L~EA"'R-~-~s_""'o"'R-~

BELL F _EXP LANG O_RD S_DW
DEFS F J1W LFAFTER O_RW TRUE

ECHODOTS F _REG LFBEFORE O_WR UPCA.SE
ERASELINE F _SEL LOGIT SEC WORDWRAP

FALSE F _SYS LOGITLEFT STACKED YESNO
FCL GRAPH NC S_DB

FIELDLEN GUIDE NEWLINE S_DN

Function List
ABORT HELPPATH MONTH REGOS U_BDL

ABS HOUR NOCHA.R REGDX U_BDLDAY
AND I2S NOT REGES U_BUL

ANSION INKEY ONLOCAL REGF U_FDL
ASC INSTR OR REGS! U_FUL
B2W KINKEY PAGESTAT REPLACE U_INCONF

CALLID LANGEXT PCBDAT RIGHT U_LDATE
CALLNUM LEFT PCBNODE RTRIM U_LDIR
CARRIER LEN PEEKB S2I U_LOGONS
CCTYPE LOGGEOON PEEKDW SCRTEXT U_LTIME

COON LOWSR PEEKW SEC U_MSGRD
CHR LTRIM PPENAME SHOWSTAT U_MSG\•IR

CURCOLOR MASK_ALNUM PPEPATH SLPATH U_NAME
CURCONF MASK_ALPHA PSA SPACE U_P\'i'OHIST
CURSEC MASK_ASCII RANDOM STRING U_PNDLC

DATE MASK_FILE READLINE STRIP U_P't/DTC
DAY MASK_NUM REGAH STRIPATX U_R.:.C'Nt.JM

DBGLEVEL MASK_PATH REGAL SYSOPSEC U_STAT
DEFCOLOR MASK_PWD REGAX TEMPPATH U_TIMEON

DOW MAXNODE REGBH TIME VALCC
EXIST MGETBYTE REGBL TIMEAP VALDATE
FERR MID REGBX TOKCOUNT VALTIME

FILEINF MIN REGCF TOKENSTR VER
FMTCC MINKEY REGCH TRIM XOR

GETENV MINLEFT REGCL UPPER YEAR
GETTOKEN MINON REGCX UN_CITY YESCHAR

GETX MKADDR REGDH UN_NAME
GETY MKDATE REGDI UN_OPER

GRAFMODE MODEM REGDL UN_STAT

The PPL Development Kit 55

Chapter7 PPL Reference

Statement List
ADJTIME OISPSTR GOODBYE MPRINT RESTSCRN
ANSIPOS DISPTEXT GOSUB MPRINTLN RETURN
BACKUP DOINTR GOTO NEWLINE SAVESCRN

BLT DTROFF HANGUP NEWLINES SENDMODEM
BROADCAST DTRON IF NEWPWD SHELL

BYE ELSE INC NEXT SHOWOFF
CALL ELSEIF INPUT OPENCAP SHOWON

CDCHKOFF END INPUTCC OPTEXT SOUND
CDCHKON ENDIF INPUTDATE PAGEOFF SPRINT

CHAT ENDWHILE INPUTINT PAGEON SPRINTLN
CLOSECAP FAPPEND INPUTMONEY POKEB STARTDISP

CLREOL FCLOSE INPUTSTR POKEDW STOP
CLS FCREATE IN PUTT EXT POKEW TOKENIZE

COLOR FGET INPUTTIME POP VARADDR
CONFFLAG FOPEN INPUTYN PRINT VAROFF

CON FUN FLAG FOR JOIN PRINTLN VARSEG
DBGLEVEL FORWARD KBDCHKOFF PROMPTSTR WAIT

DEC FPUT KBDCHKON PUSH WAITFOR
DEFCOLOR FPUTLN KBDFILE PUTUSER WHILE

DELAY FPUTPAD KBDSTUFF QUEST WRUNET
DELETE FRESHLINE LET RDUNET WRUSYS

DELUSER FREWIND LOG RDUSYS
DIR GETTOKEN MESSAGE RENAME

DISPFILE GETUSER MORE RESETDISP

Variable List
;,-==cu_~C~LS~-~~u~_7LO~N~GH~D~R-~~u~_~ .. ~G~EL~E~N-~~u~_~CI~T~Y-~-~u_~PW=D-~

U_DEF79 U_SCROLL U_SEC U_CMNTl U_TRANS
U_EXPERT U_EXPDATE U_ADDR 15) U_CMNT2 U_VER

U_FSE U_PWDEXP U_ALIAS U_HVPHONE
U_FSEP U_EXPSEC U_BDPHONE U_NOTES (4)

56 The PPL De,,e/opment Kil

PPL Reference Chapter7

ABORT() Function

Function
Returns a flag indicating whether or not the user has aborted the display of infonnation.

Syntax
ABORT()

No arguments are required

Return Type & Value

BOOLEAN If the user has aborted the display of infonnation by answering no to a
MORE? prompt or by hitting /\K or "X display, this function returns
TRUE. Otherwise FALSE is returned.

Remarks
Unless specifically disabled, the user can abort any display at any time by hitting "Kor "'X or
by answering no to a MORE? prompt. If the user does this, PCBoard will not display any
further information until the display is reset via the RESETDISP statement. This function
should be checked occasionally during long displays of information to determine if the user
wants to abort. If the function returns TRUE, you should stop printing information and
continue with the next part of the program after using RESETDISP.

Examples

INTEGER I
STARTDISP FCL

While the user has not aborted, continue
WHILE (!ABORT() J DO

PRINTLN •1 is equal to •, I
INC I

ENDWHILE
RESETDISP

See Also
RESETDISP Statement, STARTDISP Statement

The PPL Development Kit 57

Chapter7 PPL Reference

ABS() Function

58

Function
Returns the absolute value of an integer expression.

Syntax
ABS(iexp)

iexp Any integer expression.

Return Type & Value

INTEGER If iexp is greater than or equal to 0, this function returns ies:p. Otherwise
this function returns -iexp.

Remarks
The most significant use of the absolute value function is to determine the difference between
two values. For example, you may need to know in a program the difference between 8 and
13. Normal subtraction would yield a result of -5 (8-13). You don't need the mathematical
difference though, you need the logical difference between the two integers. The absolute
value function will return that. In other words, while 8-13 is -5, ABS(S-13) is 5, which may
be a more desirable result in many cases. Also, it is easier to code and understand than this:

INTEGER D
LET D :: 8-13
IF (D < 0) LET D : -D

Examples

INTEGER num
' Loop while num is < 6 or num > 10
' •.• ABS(4-8)a::4 ABS(5-81=3 ABS(6-8)=2 ABS(7-81=1
' ABS(9-8J=l ABS{l0-81=2 ABSlll-8):J ABSl12-8l=4

WHILE (ABS(DWll-8) > 2) DO
PRINTLN •Enter a number from 6 to 10: •
INPUT •Number•, num

ENDWHILE

INTEGER i, r
' Generate 10 random numbers from -5 to 5
' Print each number and it's absolute value
FOR i "' 1 TO 10

LET r "' RANDOM(l0)-5
PRINTLN •The absolute value of ". r." is • ,ABS(r)

NEXT

See Also

RANDOMQ Function

The PPL Develop1Mnt Kit

PPL Reference Chapter7

ADJTIME Statement

Function
Adjust the users time up or down.

Syntax
ADJTIME minutes

minutes An integer expression containing the number of minutes that the users
time left should be adjusted by. A value greater than O will add time: a
value less than O will deduct time.

Remarks
Use this statement to reward (or penalize) the user with more (or less) time based on any
condition or event you wish. However. the added/deducted time is only applied to the current
call. It will not be remembered after the caller hangs up, except that it will be reflected in the
time online today. For example. if a caller has a normal daily limit of 30 minutes and you add
15 minutes, they can stay online for up to 45 minutes. If they only stay online for 15 minutes
and hangup, they will only have 15 minutes left at the beginning of the next call, not 30: the
added time isn't saved. If they stay online for 40 minutes though, it will have gh·en them their
entire normal allotment of time plus 10 of the 15 extra minutes. If they ti)' to call back to use
their last 5 minutes they will not be able to because PCBoard will see that they've used their
entire daily time limit plus 10 minutes. The last 5 minutes wasn't saved. Note that time may
only be added if the users time has not been adjusted for an event. Time may always be
subtracted.

Examples
STRING yn
INPUTYN "Do you wish to gamble 5 minutes for 10~.yn.@XOE
IF (yn = YESCHA.R{J) THEN

IF (RANDOM(lJ = ll THEN
PRINTLN "You •woN• ! 10 extra minutes awarded .
AD.J'l'IIIB 10

ELSE
PRINTLN "You lost. Sorry, but I have to take 5 minutes now
ADiJ'l'IIIB -5

ENDIF
ELSE

PRINTLN "Chicken! : J"
ENDIF

See Also
MINLEFT0 Function, MINON0 Function, U_TIMEON0 Function

The PPL Developnrent Kil 59

Chapter7 PPL Reference

AND() Function

60

Function
Calculate the bitwise AND of two integer arguments.

Syntax
AND (iexpl, iexp2)

iexpl

iexp2

Any integer expression.

Any integer expression.

Return Type & Value

INTEGER Returns the bitwise AND ofiexpl and iexp2.

Remarks
This function may be used to clear selected bits in an integer expression by ANDing the
expression with a mask that has the bits to clear set to O and the bits to ignore set to 1.
Another use is to calculate the remainder of a division operation by a power of two by ANDing
the dividend with the power of two minus one.

Examples

' Clear the high word, keeping only the low word
PRINTLN "07FFFFFFFh AND OFFFFh "' ",AHD(07Pl'PPrrl'll,Ol'l'Pl'b.)
' In this case 123116 = AND(123,15J (15 = llllb)
PRINTLN "The remainder of 123 divided by 16 is ",UD(123,1111b)

See Also
NOTO Function, ORO Function, XORO Function

The PPL Development Kit

PPL Reference Chapter 7

ANSION() Function

Function
Report the status of ANSI availability with the current caller.

Syntax
ANSION()

No arguments are required

Return Type and Value

BOOLEAN If the caller can support ANSI then TRUE is returned, otherwise FALSE
is returned.

Remarks
This function will return TRUE if the caller has ANSI capabilities. This could have been
detennined one of two ways. If the user answered yes to the Do you want graphics?
prompt this function will return TRUE. If the user answered no. there is still a chance that
the user has ANSI capabilities~ PCBoard will interrogate the remote computer to find out if
ANSI is available. If it is, this function will return TRUE. Finally. if the user answered no
and PCBoard was unable to detect ANSI at login this function will return FALSE. There is
still a chance that the user could support ANSI but the only safe approach at this point is to
assume that there is no ANSI available.

Examples

IF (MIS:COII()) PRINTLN "You have ANSI support available!"

See Also
ANSIPOS Statement, BACKUP Statement, FORWARD Statement, GETX.0 Function,
GETYO Function, GRAFMODEO Function

The PPL J)e,,,elopment Kit 61

Chapter7 PPL Reference

ANSIPOS Statement

62

Function
Position the cursor anywhere on the screen using an ANSI positioning escape sequence.

Syntax
ANSIPOS xpos, ypos

xpos An integer expression with the screen column (x position) in which to
place the cursor. Valid columns are 1 through 80.

ypos An integer expression with the screen row (y position) on which to place
the cursor. Valid rows are I through 23.

Remarks
This statement will position the cursor to the specified (X,Y) coordinate on the screen but only
if the current caller has ANSI support. If you are writing a program that will require ANSI
positioning, check the value of the ANSION0 function. If ANSI is not available, this
statement will be ignored.

Examples
CL$
IF (ANSION (J I THEN

uts1•0s 1.1
PRINTLN "This starts at (1,11"
AIISI•os 3,3
PRINTLN "This starts at (3,31"
AIISIPOS 2,2
PRINTLN "And *THIS* starts at (2, 2 I•

ENDIF

See Also
ANSION0 Function, BACKUP Statement, FORWARD Statement, GETX0 Function,
GETY0 Function, GRAFMODE0 Function

The PPL Development Ku

PPL Reference Chapter7

ASC() Function

Function
Converts a character to it1s ASCII code.

Syntax
ASC (sexp)

sexp Any string expression.

Return Type & Value

INTEGER Returns the ASCII code of the first character of sexp (1-255) or O if sex:p is
an empty string.

Remarks
In other languages (such as BASIC) you can have any of the 256 possible ASCII codes (0-255)
in a string. In PPL you are limited to 255 codes (1-255) because ASCII O is used to terminate
strings and can't appear in the middle of a string. So, if you ever get a O returned from this
function, it is because you passed it an empty string.

Examples

PRINTLN "The ASCII code for s is • ,uccns•)
• Convert a lowercase s to uppercase
STRING s
LET s = CHR(UC("a")-ASC(na•)+ASC("A")l

See Also

CHRO Function

The PPL Development Kit 63

Chapter7 PPL Reference

AUTO Constant

64

Function
Set the auto answer flag in an INPUTSTR or PROMPTSTR statement.

Value
8192 = 10000000000000b = 200000 = 2000h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to automatically answer
themselves iflell alone for 20 seconds. It can be especially useful if you are writing a program
that should work with automated systems; use the AUTO constant and the question will
automatically be answered after 20 seconds just in case the automation system doesn't know
what to do with it.

Examples

STRING ans
LET ans = NOCHAP. (J
INPUTSTR •Run program now•, ans, @XOE, 1, "• ,AUTO+YESNO
IF (ans = NOCHAR (J) END

See Also
INPUTSTR Statement, PROMPTSTR Statement

The PPL D,,,e/o-nt Ku

PPL Reference Chapter 7

B2W() Function

Function
Convert two byte-sized arguments into a single word-sized argument.

Syntax
B2W (iexpl, iexp2)

iexpl

iexp2

Any integer expression with a value between 000h and 0FFh.

Any integer expression with a value between 000h and 0FFh.

Return Type & Value

INTEGER Returns a word-sized value between 00000h and OFFFFh. The return
value is computed by the following expression: iexpl+iexp:Z"'OlOOh.

Remarks
It is sometimes necessary to combine two bytes together to fonn a word. This function
simplifies that process, and speeds it up a little as well by doing it internally instead of
requiring you to perfonn the arithmetic yourself. It can be especially useful when used with
the DOINTR Slatement.

Examples
This line will display 25 "' s at the current screen position
NOTES: 10h is the Video BIOS interrupt

B2W(ASC(" 0),09h) is the char to print and the service nwnber
0007h is video page 0, attribute 7
25 is the number of characters to print
All others are O and not needed for this function

DOINTR 10h,82W(09h,ASC(" ..)), 0007h, 25, 0, 0, 0, 0, 0, 0

See Also
DOINTR Statement

The PPL De-.,e/opment Kil 65

Chapter7 PPL Reference

BACKUP Statement

66

Function
Move the cursor backward a specified number of columns.

Syntax
BACKUP numcols

numcols An integer expression of the number of columns to move backward. Valid
values are I through 79.

Remarks
This statement will move the cursor backward, nondestructively, a specified number of
columns. It will work with or without ANSI. If ANSI is available (as reponed by the
ANSIONO function) then it will use an ANSI positioning command; otherwise it will use the
specified number of backspace characters. ANSI is usually faster, but backspace characters
will get the job done. Note that you cannot use this function to move beyond column I; to do
so would require ANSI. So, if the cursor is already in column I this statement will have no
effect. And if the cursor is in column 80 the maximum you could move backward would be 79
(column 80 - 79 columns - column I).

Examples

PRINT "Rolling dice -
FOR i = 1 TO 10

LET dl = RANDOM(S)+l
LET d2 = RANDOM(Sl+l
PRINT dl, "-•.d2
BACltlJP 3

NEXT
NEWLINE

See Also

ANSIONO Function, ANSIPOS Statement, FORWARD Statement, GETXO Function,
GETYO Function, GRAFMODEO Function

The PPL De,,e/opment Kit

PPL Reference Chapter7

BELL Constant

Function

Set the bell flag in a DISPTEXT statement.

Value
2048 - 100000000000b - 40000 - 800h

Remarks
The DISPTEXT statement has the ability to sound a bell before displaying the actual text of a
prompt. This is useful when you want to get the users attention when displaying information.
It sends a "'G (ASCII 7) character to the remote caller and sounds the alarm on the local
computer running PCBoard (unless the alarm has been toggled off). It is the responsibility of
the users terminal software to support the "'G.

Examples

Get the users attention and display the closed board prompt
DISPTEXT 11, BBLL+LFAFTER+LFBEFORE

See Also
DISPTEXT Statement

The PPL /)evelopment Kit

Chapter 7 PPL Reference

BLT Statement

68

Function

Display a specified bulletin number to the user.

Syntax
BLT bltnum

bltnum The number of the bulletin to display to the user. Valid values are l
through the number ofbu11etins available.

Remarks
This statement will display a specified bu11etin number to the user. The BLT.LST file for the
current conference will be searched for the bulletin. If the bulletin number is invalid (less than
I or greater than the highest bulletin number defined) then nothing will be displayed.

Examples

INTEGER num
INPUT "Bulletin to view", num
BL'l' num

See Also

DIR Statement, JOIN Statement, QUEST Statement

The PPL Development Kit

PPL Reference Chapter 7

BOOLEAN Type

Function
Declare one or more variables of type boolean.

Syntax
BOOLEAN varlarr(s[,s [, s]]) [,varlarr(s[,s [, s]] l]
BOOLEAN var arr(s[,s [, s]]) [,var arr(s[, s [, s]])]

var The name of a variable to declare. Must start with a letter [A-ZJ which
may be followed by letters. digits [0-9] or the underscore [_]. May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions
as var are used.

s The size (0-based) of an array variable dimension. Any constant integer
e.xpression is allowed.

Remarks
BOOLEAN variables can hold two values: I or O (TRUE or FALSE). It is stored internally
as a one byte unsigned character. If a BOOLEAN is assigned to or from an INTEGER type
then the value 1 or 0 is assigned. If a BOOLEAN is assigned to a STRING type then it is
automatically converted to a string (either "I" or "0"). If a STRING is assigned to a
BOOLEAN then the value of the string will be used; a 0 value will be taken as is. another
other value will be converted to I. All other types. when assigned to or from a BOOLEAN.
will be converted to an INTEGER first before being assigned to or from the BOOLEAN type.

Examples

BOOLBAII' flag, bit, i ■Prime(lOOI. leapYears(2079-19001

See Also
DATE Type, INTEGER Type, MONEY Type, STRING Type, TIME T_,-pe

The PPL Development Kit 69

Chapter7 PPL Reference

BROADCAST Statement

70

Function
Broadcast a single line message to a range of nodes.

Syntax
BROADCAST lonode, hinode, message

lonode An integer expression containing the low node number to which the
message should be broadcast.

hinode An integer expression containing the high node nwnber to which the
message should be broadcast.

mes sage A string expression containing the message text which should be broadcast
to the specified nodes.

Remarks
This PPL statement functions the same as the PCBoard BROADCAST command, which is
normally reserved for SysOp security level. This statement allows you to programatically
broadcast a message 11> a range of nodes without giving users the ability to manually broadcast
at any time they choose.

Examples

Broadcast a message to a specific node
BROADCAST 5, 5, "'l'hia brolldcast fr01111. "+S'l'lllfQ(l'C'BIJODII())
' Broadcast to a range of nodes
BROADCAST 4,8,"Stand.-by for log off ia. 10 aecond■ n
' Broadcast to all nodes
BllOADCU'l' 1, 65535, •Bello 11111 •

See Also

RDUNET StaJement, UN_ ... Q Functions, WRUNET Statement

The PPL Development Kit

PPL Reference Chapter7

BYE Statement

Function

Log the user off as though they had typed the BYE command.

Syntax
BYE

No arguments are required

Remarks
There are multiple ways for the user to log off. One is by typing G at the command prompt.
That will warn them if they have files flagged for download and (optionally) confirm their
selection (incase they accidentally hit G and ENTER). Another is the BYE command.
PCBoard assumes that, if the user typed BYE instead of G, that they really want to log off.
didn't type it in accidentally. and want to leave now. The BYE statement does just that. It is
intended to provide you PPL with the same functionality as many PCBoard prompts where G
or BYE can be entered at any point.

Examples

STRING s
INPUT "What do you want to do", s
IF (s = "G") THEN GOODBYE
ELSEIF (s = "BYEfi) THEN BYB
ELSE KBDSTUFF s
ENDIF

See Also
DTROFF Statement, DTRON Statement, GOODBYE Statement, HANGUP Statement

The PPL Development Kit

Chapter7 PPL Reference

CALL Statement

72

Function
Call (execute) another PPE file from the currently executing PPE.

Syntax
CALL filename

filename A string expression containing the complete path and filename of a PPE
file to load and execute.

Remarks
It is sometimes convienient to load and run complete programs from other programs, similar
to how you process subroutines with GOSUB and RETURN. PPL supports running both
external EXE and COM files via the SHELL statement and other PPE files via the CALL
statement. CALL allows you to load and run another PPE file, after which control returns to
the first PPE at the statement after the CALL. The second PPE is completely separate from
the first. You may pass values to the PPE by tokenizing a string with the TOKENIZE
statement. If you need to pass values back to the first PPE, you will need to create some sort of
parameter passing convention yourself. For example, you may have the second PPE create a
file that has the needed information for the first PPE.

Examples

STRING s
INPUT "What PPE file do you wish to run·, s
CALL "C:\PCB\PPB\•+a+".PPB"

See Also

SHELL Statement, TOKENIZE Statement

The PPL Development Kit

PPL Reference

CALLID() Function

Function

Access caller ID information returned from caller ID compatible modems.

Syntax
CALLID()

No arguments are required

Return Type & Value

Chapter7

STRING Returns a string with caller ID information captured from a caller ID
compatible modem.

Remarks
Some areas of the country have an optional service available which will send. to your modem
(other other telephone device), the phone number and/or name of the person calling you. This
service is known as 'Caller ID'. Some modems are starting to support it directly by capturing
the infonnation and sending it to you between the first and second rings. It can be very helpful
in determining who is calling (or abusing) your BBS or for statistical purposes. This function
will return the information if your modem supports it.

Examples

FAPPEND l, "CID.LOG" ,O_WR, S_DW
FPUTLN 1, LEFT (U_NAME (J • 3 0 l +CALLJ:D 11
FCLOSE 1

See Also
CARRIERO Function, MODEMO Function

The PPL Development Kil 73

Chapter7 PPL Reference

CALLNUM() Function

74

Function

Returns the current caller number.

Syntax
CALLNUM(I

No arguments are required

Return Type & Value

INTEGER Returns the caller number of the user online.

Remarks
Everytime a user logs on to the system the system caller number is incremented. This function
will return the caller number for use in your PPL applications. It is kept in the main
conference MSGS file. Note that the nwnber is not incremented until after the user has
completely logged on to the system so you should generally wait until LOGGEDON0 reports
TRUE before using this function.

Examples

IF (LOGGEDON() & ICALLHOH() = 1000000)) THEN
PRINTLN •@BEEP@CONGRATULATIONS ! ! ! "
PRINTLN •@BEEP@YOU ARE THE 1,000,000th CALLER!!!"
PRINTLN •upgrading security
GETUSER
LET U_SEC : 99
PUTUSER

ENDIF

See Also

LOGGEDONO Function, ONLOCALO Function, U_LOGONSO Function

The PPL Development Kil

PPL Reference Chapter7

CARRIER() Function

Function
Detennine what speed the current caller is connected at.

Syntax
CARRIER()

No arguments are required

Return Type & Value

INTEGER Returns an integer with the connect speed of the current caller.

Remarks
Should the need arise for you to know what speed the caller is connected to the BBS at. this
function will return that information. You should note that this information is not guaranteed
accurate. It is the responsibility of the modem to tell PCBoard the actual connect speed.
especially in locked port environments. For example, if your serial port is locked at 38-1-00
bps,. the modem can usually be configured to report either the actual connect speed (9600 bps.
for example) or the locked port rate (38400 bps). PCBoard has to trust the modem: if the
modem tells it 38400, it will have to live with that, as will your PPL applications.

Examples

IF (CAJ\ltIBR() < 9600) THEN
PRINTLN "Sorry. downloads are not permitted at. speeds below 9600 bps"
END

ENDIF

See Also

CALLIDO Function, MODEMO Function

The PPL Development Kit

Chapter7 PPL Reference

CCTVPE{) Function

76

Function
Determine what the type of a credit card is based on the credit card number.

Syntax
CCTYPE (ccnum)

ccnum A string expression with the credit card number that is to be checked.

Return Type & Value

STRING Returns a string with the name of the card.

Remarks
PPL can be used to perform some simple credit card validation. This function returns the
issuer of a credit card based on the credit card number. For example, a valid credit card
number that starts with a "4" is a Visa card, so the string "VISA" will be returned. Ifa credit
card is invalid (VALCCO = FALSE) or not recognized, then "UNKNOWN" will be returned.
Other valid credit card with known types will return the appropriate string. The following
card types are recognized by PPL: "DISCOVER". "CARTE BLANCHE", "DINERS CLUB".
"OPTIMA". "AMERICAN EXPRESS". "VISA". and "MASTERCARD".

Examples

STRING s
INPUT "Credit card number",s
IF (VALCC(s)) PRINTLN LEFT(CC'l'YPE(a),20)," - ",FMTCC(s)

See Also

FMTCCO Function, VALCCO Function

The PPL Development Kit

PPL Reference Chapter7

CDCHKOFF Statement

Function
Tum off carrier detect checking.

Syntax
CDCHKOFF

No arguments are required

Remarks
PCBoard has built in automatic carrier detecting. What this means is that if someone should
hangup unexpectedly. PC Board will detect it, log it to the callers log. and recycle back to the
call waiting screen. Some applications require the ability to tum this off: for example. a
callback verification PPE needs to hangup on the caller and then do more processing.
Nonnally. PCBoard would just recycle at that point. So, just before you start a section of code
that should continue regardless of the existence of a caller online. you should issue a
CDCHKOFF statement. It will tum off the automatic carrier checking. When you\·c
finished the block where carrier checking has been disabled. issue the CDCHKON statement
to tum it back on.

Examples

CDCIIKOFP
DTROFF
DELAY' 18
DTRON
SENOMODEM "ATDTlB00DATAFON" Please don't call this number! :)
WAITFOR "CONNECT", 60
CDCHKON

See Also
CDCHKON Statement, CDONQ Function, KBDCHKOFF Statement, KBDCHKON
Statement

The PPL Development Kit

Chapter7 PPL Reference

CDCHKON Statement

78

Function

Tum on carrier detect checking.

Syntax
CDCHKON

No arguments are required

Remarks
PCBoard has built in automatic carrier detecting. What this means is that if someone should
hangup unexpectedly, PCBoard will detect it, log it to the callers log, and recycle back to the
call waiting screen. Some applications require the ability to tum this off; for example, a
callback verification PPE needs to hangup on the caller and then do more processing.
Nonnally, PCBoard would just recycle at that point. So, just before you start a section of code
that should continue regardless of the existence of a caller online, you should issue a
CDCHKOFF statement. It will tum off the automatic carrier checking. When you1ve
finished the block where oarrier checking has been disabled, issue the CDCHKON statement
to tum it back on.

Examples

CDCHKOFF
DTROFF
DELAY 18
DTRON
SENDMODEM "A"rDT1800DA.TAFON"+CHR(l3) ' Please don't call this number! :I
WAITFOR "CONNECT", 60
CDClll<ON

See Also

CDCHKOFF Statement, CDON0 Function, KBDCHKOFF Statement, KBDCHKON
Statement

The PPL Development Kil

PPL Reference

COON() Function

Function

Detennine if carrier detect is on or not.

Syntax
COON()

No arguments are required

Return Type & Value

Chapter7

BOOLEAN Returns a boolean TRUE if carrier detect is on, FALSE othenvise.

Remarks
If you have used CDCHKOFF to tum off automatic carrier detect checking PCBoard will not
automatically detect and act on a carrier loss. If necessary, this function can be used to detect
a carrier loss condition and act appropriately.

Examples

IF I !COOS()) THEN
LOG "Carrier lost in PPE "+PPENAME(J .FALSE
HANGUP

ENDIF

See Also
CDCHKOFF Statement, CDCHKON Statement

The PPL De-,e/opment Kit 79

Chapter 7 PPL Reference

CHAT Statement

80

Function
Enter SysOp chat mode.

Syntax
CHAT

No arguments are required

Remarks
One of the features of PCBoard where change is often requested is the operator page facility.
Some people want to be able to configure multiple ranges of availability per day, some want a
different sounding page bell, longer or shorter page attempts, etc, etc. This statement, along
with the PAGEON and PAGEOFF statements and the PAGESTATQ function, allow you to
implement an operator page in any way desired. Of course, the SysOp may still start a chat
with the FIO key or by responding to the default O (operator page) command, and the CHAT
statement may be used at anytime (although you'll generally want to avoid starting it unless
you've confirmed that the SysOp is available since the user has no way to exit it himself).

Examples

PAGEON
FOR i " 1 TO 10

PRINT "@BEEP@"
DELAY 18
IF (KINKEY() •) THEN

CHAT
GOTO exit

ENDIF
NEXT
:exit

See Also

PAGEOFF Statement, PAGEOFF Statement, PAGESTATQ Function

The PPL Development Kit

PPL Reference

CHR() Function

Function
Converts an ASCII code to a character.

Syntax
CHR(iexp)

iexp Any integer expression between O and 255.

Return Type & Value

Chapter7

STRING Returns a one character long string for ASCII codes from l to 255 or an
empty string for ASCII code 0.

Remarks
In other languages (such as BASIC) you can have any of the 256 possible ASCII codes (0-255)
in a string. In PPL you are limited to 255 codes (1-255) because ASCII O is used to tenninate
strings and can't appear in the middle of a string. So, if you ever get an empty string from this
function, it is because you passed it a 0. Any other value will return a valid string with a
single character.

Examples
PRINTLN "The ASCII code for Sis -,ASC{"S"I
' Convert a lowercase s to uppercase
STRING s
LET s = CBR(ASC("a")-ASC(•a•)+ASC("A"I I

See Also
ASCO Function

The PPL Development Kit 81

Chapter 7 PPL Reference

CLOSECAP Statement

82

Function
Close the screen capture file.

Syntax
CLOSECAP

No arguments are required

Remarks
PCBoard has the ability to capture screen output to a file for later reference. PPL allows that
same ability via the OPENCAP and CLOSECAP statements. This could be useful in a
program that executes a series of commands in non-stop mode. The process could open a
capture file first, execute the commands, close the capture file, then allow the user to view or
download the capture file. CLOSECAP closes the capture file and turns off screen capturing.
Also, the SHOWON and SHOWOFF statements can be used to tum on and off showing
infonnation to the screen while allowing that same infonnation (even if not displayed or
transmitted via modem) to be captured to a file. The SHOWSTATO function can be used to
check the current status of the SHOWON and SHOWOFF statements.

Examples

BOOLEAN ss
LET ss : SHOWSTAT ()
SHOWOFF
OPENCAP "CAP" +STRING (PCBNODE ()) • ocFlag
IF (ocFlag) THEN

DIR •u;NS•
CLOSBCU
KBDSTUFF •FLAG CAP"+STRINGIPCBNODEI) I +CHR(l3)

ENDIF
IF !SS) THEN

SHOWON
ELSE

SHOWOFF
ENDIF

See Also

OPENCAP Statement, SHOWOFF Statement, SHOWON Statement, SHOWSTATO
Function

The PPL Development Kit

PPL Reference Chapter7

CLREOL Statement

Function
Clear the current line from the cursor to the end of the line using the current color.

Syntax
CLREOL

No arguments are required

Remarks
This statement will work one of two ways depending on the mode the caller is in. lfthc caller
is in graphics mode (or non-graphics ANSI-positioning) then PCBoard will issue the ANSI
sequence to clear to the end of the line using the current color. ANSI emulators. when written
properly, will echo the color all the way to column 80 of the current line when they receive this
ANSI sequence. If the user is in non-graphics non-ANSI mode, PCBoard wil1 write sufficient
spaces to the display to move to column 80 and then backspace to the original position. Note
that this will not clear the 80th column~ the reason for this is to always keep the cursor on the
current line. If the cursor wrote a space to column 80 and moved to the beginning of the next
line it wouldn't be able to move back up to the previous line without ANSI (which we already
know we don't have). This should be adequate for most applications.

Examples

COLOR @X47
CLS
PRINT "This is some sample text. (This will disappear. l"
WHILE (INKEYII = ""l DELAY 1
BACKUP 22
COLOR @XlF
CLREOL
PRINT "This goes to the end of the line.

See Also
CLS Statement

The PPL Development Kil 83

Chapter7 PPL Reference

CLS Statement

84

Function
Clear the screen using the current color.

Syntax
CLS

No arguments are required

Remarks
This statement will work one of two ways depending on the mode the caller is in. If the caller
is in graphics mode (or non-graphics ANSI-positioning) then PCBoard will issue the ANSI
sequence to clear to the screen using the current color. If the user is in non-graphics
non-ANSI mode, PCBoard will write send an ASCII 12 (form feed) character to the remote
tenninal in a last ditch effort to clear the remote callers screen. Many terminal programs do
support this, but not all, so be aware that callers may see the ASCII 12 instead of a clear
screen.

Examples

COLOR @X47
CLS
PRINT "This is some sample text. (This will disappear.)·
WHILE (INKEY() : "") DELAY 1
BACKUP 22
COLOR @XlF
CLREOL
PRINT "This goes to the end of the line."

See Also

CLREOL Statement

Tht! PPI. l>m,,,,/nnm.,mt KU

PPL Reference Chapter7

COLOR Statement

Function
Change the current active color.

Syntax
COLOR newcolor

newcolor An integer expression containing the new color to be used by PCBoard and
the remote terminal software.

Remarks
This statement win change the color in use by PCBoard and send the appropriate ANSI
sequence to change color to the remote terminal software. Note that this statement will only
affect a color change if the user is in graphics mode. If the user is in non-graphics mode this
statement will be ignored.

Examples

COLOR c,.x,7
CLS
PRINT "This is some sample text. {This will disappear.)"
WHILE (INKEY() = •") DELAY 1
BACKUP 22
COLOR @xll'
CLREOL
PRINT "This goes to the end of the line."

See Also
CURCOLORQ Function, DEFCOLOR Statement, DEFCOLOR0 Function

The PPL Development Kit 8.<

Chapter7 PPL Reference

CONFFLAG Statement

86

Function
Set specified flags in the current conference for the current user.

Syntax
CONFFLAG confnum, flags

confnum An integer expression containing the conference number to affect.

flags An integer expression containing the flags to set.

Remarks
Each user on the BBS has a set of five flags for each conference that control various settings.
These flags control the users registration in a conference, their expired status in a conference,
whether or not they have a conference selected, whether or not they have mail waiting in a
conference, and whether or not they have SysOp priviledges in a conference. Any or all of
these flags may be set at once. To assist you in using this statement, five predefined constants
are available to specify each flag: F_REG, F_EXP, F_SEL, F_MW, and F_SYS. To use
these constants simply add the ones you need together.

Examples

Automatically register them in selected conferences
INTEGER i
FOR i ::: 1 TO 10

CODPLAQ i,P_U::G+P_BXP+P_SBL
NEXT
FOR i ::: 11 TO 20

CODl!'LAQ i,P_RBG+l!'_SBL
NEXT

See Also
CONFUNFLAG Statement

The PPL Develop-nt Kit

PPL Reference Chapter7

CONFUNFLAG Statement

Function
Clear specified flags in the current conference for the current user.

Syntax
CONFUNFLAG confnum, flags

confnum An integer expression containing the conference number to affect.

flags An integer expression containing the flags to clear.

Remarks
Each user on the BBS has a set of five flags for each conference that control various settings.
These flags control the users registration in a conference, their expired status in a conference.
whether or not they have a conference selected, whether or not they have mail waiting in a
conference, and whether or not they have SysOp priviledges in a conference. Any or all of
these flags may be cleared at once. To assist you in using this statement, five predefined
constants are available to specify each flag: F_REG, F_EXP. F_SEL. F_MW. and F_SYS.
To use these constants simply add the ones you need together.

Examples
' Automatically deregister them from selected conferences
INTEGER i
FOR i : 1 TO 10

CoutJIIFLAG i, I' _RBG+I' _Ul'+I' _SBL
NEXT
FOR i = 11 TO 20

COID'tJWl'l.MiJ i, I' _RBG+I' _SBL
NEXT

See Also
CONFFLAG StaJement

The PPL Development Kil 87

Chapter7 PPL Reference

CURCOLOR() Function

88

Function

Returns the color in use by the ANSI driver.

Syntax
CORCOLOR()

No arguments are required

Return Type & Value

INTEGER Returns the color code most recently issued to the ANSI driver.

Remarks
The @X code processor within PCBoard has the ability to save and restore color codes built in.
PCBoard accomplishes this by saving the current color whenever it encounters an @X00 and
reissuing the color change when it encounters an @XFF. Unfortunately, PCBoard will only
remember one color at a time. With this function you can save and restore as many colors as
your application needs.

Examples

INTEGER cc, x, y
COLOR @X0F
ANSIPOS 26,23
PRINT "Hit the SPACE BAR to continue"
WHILE (KINKEYt) <> " ") DO

CLS
LET x = l+RANDOM(57}
LET y = l+RANDOM(21)
PUSH l+RANDOM(14J
GOSUB sub
LET cc = cmtCOLOR I)
PUSH @XOF
GOSUB sub
PUSH cc
GOSUB sub
ANSIPOS l,y
CLREOL

ENDWHILE

:sub
INTEGER c
POP c
COLOR c
ANSIPOS x,y
PRINT "PCBoard 15.0 with PPL!~
DELAY 18
RETURN

See Also

COLOR Statement, DEFCOLOR Statement, DEFCOLORO Function

Tl,e PPL Development Kit

PPL Reference

CURCONF() Function

Function
Get the current conference number.

Syntax
CURCONF()

No arguments are required

Return Type & Value

INTEGER Returns an integer with the current conference number.

Remarks

Chapter 7

This function can be useful in configuring a PPL program to work in different ways in
different conferences. As a quick example, we have a PPE file on Salt Air that inteifaces with
the enter message command. If a user is in certain conferences we prompt them for additional
information that we will likely need, otherwise we skip to the normal enter message process.
Of course, that's just one example; you are sure to have other uses for it.

Examples

IF (c:mu:::!0111'() :: 6) THEN The Salt Air beta conference is 6
PRINTLN "You are leaving a message in the beta conference. "
PRINTLN "Be sure to leave your file date and time"
PRINTLN "and a complete description of the problem.

ENDIF
KBDSTUFF TOKENSTR f J

See Also
MESSAGE Statement, U_NAMEO Function

The PPL Development Kil 89

Chapter7 PPL Reference

CURSEC() Function

90

Function
Get the users current security level.

Syntax
CURSEC ()

No arguments are required

Return Type & Value

INTEGER Returns an integer with the current security level of the user.

Remarks
Although the users primary security level may be accessed via the U_SEC variable after using
the GETUSER statement, it is often necessary to know the users security level right now after
taking into account whether or not they have expired access. additional security from joining a
specific conference, or additional security from the keyboard. This function will take all
variables into account and return the current 'logical' security level.

Examples

IF (CUIUIBC() < 100) PRINTLN "Insufficient security!~

See Also

U_EXPSEC Variable, U_SEC Variable

The PPL Developme11t Kit

PPL Reference Chapter 7

DATE Type

Function
Declare one or more variables of type date.

Syntax
DATE varlarr(s I, s[, s] JI I ,var I arr (s I, s[, s] I I J

var The name of a variable to declare. Must start with a letter [A-Z] which
may be followed by letters, digits [0-9) or the underscore LI- May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming com·cntions
as var are used.

s The size (0-based) of an array variable dimension. Any constant integer
expression is allowed.

Remarks
DATE variables are stored as julian dates. Valid dates are O (a special case to represent an
invalid date) and 1 (I JAN 1900) through 36524 (31 DEC 1999) through 65535 (5 JUN 2079!.
It is stored internally as a two byte unsigned integer. If a DATE is assigned to or from an
INTEGER type then the julian date (0-65535) is assigned. If a DATE is assigned to a
STRING type then it is automatically converted to the following format: "MM/OO/YY".
where MM is the two digit month (01-12). DD is the two digit day of the month (01-31). and
YY is the two digit year (00-99). If a foreign language is in use that uses a different date
format (for example, "DD/1\,fM/YY" or "VY.MM.DD") then that will be taken into account. ff
a STRING is assigned to a DATE then PPL will do it's best to convert the string back to the
appropriate julian date. However, dates before 1980 will not be handled correctly because only
a two digit year is used in strings. All other types. when assigned to or from a DATE. will be
convened to an INTEGER first before being assigned to or from the DATE type.

Examples

DA'l'B ~. today, raagel2), leapYeara(SD)

See Also
BOOLEAN Type, INTEGER Type, MONEY Type, STRING T)pe, TIME 1)pe

The PPL Development Kil 91

Chapter7 PPL Reference

DATE{) Function

92

Function
Get today's date.

Syntax
DATE()

No arguments are required

Return Type & Value

DATE Returns a date for today.

Remarks
The date returned is represented internally in a julian format (the number of days since
January 1, 1900). It may be used as is (for display, storage or as an argument to another
function or statement) or assigned to an integer for arithmetic purposes.

Examples

PRINTLN "Today is ",DA'l'E()

See Also

DAYO Function, DOWO Function, MKDATEO Function, MONTHO Function, TIMEO
Function, YEARO Function

The PPL Development Kit

PPL Reference

DAY() Function

Function
Extracts the day of the month from a date.

Syntax
DAY(dexp)

dexp Any date expression.

Return Type & Value

Chapter7

INTEGER Returns the day of the month from the specified date expression (dexp).
Valid return values are from I to 31.

Remarks
This function allows you to extract a particular piece of information about a DA TE value. in
this case the day of the month of the date.

Examples

PRINTLN "Today is: ",DAY(DATBI))

See Also
DATEQ Function, DOWQ Function, MONTHQ Function, YEARQ Function

The PPL Development Kit 93

Chapter7 PPL Reference

DBGLEVEL Statement

94

Function

Set a new debug level for PCBoard.

Syntax
DBGLEVEL level

level An integer expression with the new debug level.

Remarks
PCBoard supports an internal variable that allows debug infonnation to be written to the
callers log. Level O specified no debug infonnation. Levels I through 3 specify different
(increasing) levels of debug infonnation. It can also be useful for debugging your PPL
programs. This statement allows you to change the PCBoard debug level on the fly without
the need to have the SysOp exit and change it in the BOARD.BAT file.

Examples

INTEGER newlvl
INPUT "New level", newlvl
NEWLINE
DBQLBYBL D-lTl

See Also

DBGLEVELO Function, LOG Statement

The PPL Development Kit

PPL Reference

DBGLEVEL() Function

Function
Returns the debug level in effect.

Syntax
DBGLEVEL()

No arguments are required

Return Type & Value

INTEGER Returns the current debug level.

Remarks

Chapter7

PCBoard supports an internal variable that allows debug information to be written to the
callers log. Level O specified no debug information. Levels I through 3 specify different
(increasing) levels of debug information. It can also be useful for debugging your PPL
programs. Using this function you can tie your debug information to a specified debug level of
your choosing.

Examples

IF (DBQLBVl!IL() = 11 LOG "Writing DEBUG info for "+PPENAME{J .o

See Also
DBGLEVEL Stlllement, WG Stlllement

The PPL Development Kil 95

Chapter7 PPL Reference

DEC Statement

96

Function

Decrement the value of a variable.

Syntax
DEC var

var The variable with the value to decrement.

Remarks
Many programs require extensive addition and subtraction, and most often, a value is
increased or decreased by I. This statement allows for a shorter, more efficient method of
decreasing (decrementing) a value by I (DEC i) than subtracting I from a variable and
assigning the result to the same variable (LET i = i - 1).

Examples

INTEGER i
PRINTLN •countdown:
LET i = 10
WHILE Ii >= OJ DO

PRINTLN "T minus ft, i
DllC i

ENDWHILE

See Also

INC Statement

The PPL Development Kit

PPL Reference

DEFCOLOR Statement

Function

Change the current color to the system default color.

Syntax
DEFCOLOR

No arguments are required

Remarks

Chapter7

This statement will change the color in use by PCBoard to the system default and send the
appropriate ANSI sequence to change color to the remote terminal software. This statement is
equivalent to COLOR DEFCOLORO. Note that this statement will only affect a color
change if the user is in graphics mode. If the user is in non-graphics mode this statement will
be ignored.

Examples

COLOR @X47
CLS
PRINT ·This is some sample text. (This will disappear.)"
WHILE (INICEY(I "' •") DELAY 1
BACKUP 22
DBPCOLOR
CLREOL
PRINT •This goes to the end of the line.

See Also
COLOR Statement, CURCOLORO Function, DEFCOLORO Function

The PPL Deve/opmmt Kit 97

Chapter7 PPL Reference

DEFCOLOR() Function

98

Function
Return the system default color.

Syntax
DEFCOLOR()

No arguments are required

Return Type & Value

INTEGER Returns the system default color as defined in PCBSetup.

Remarks
This function is useful in cases where you must pass a color to a statement but you want to
honor the SysOp's choice of default color for the system. In that case you cannot use the
DEFCOLOR statement because it does not return a value that you can pass to another
statement.

Examples

STRING yn
DEFCOLOR
CLS
LET yn = YESCHAR ()
INPUT'iN Mcontinue" ,yn.DBPCOLOll()
IF {yn = NOCHAR ()) END

See Also

COLOR Statement, CURCOLORQ Function, DEFCOLOR Statement

The PPL »-lopment Kil

PPL Reference Chapter 7

DEFS Constant

Function
Used when no special statement parameters or flags are needed and defaults are sufficient.

Value
o-ob-0o-0h

Remarks
There are many statements that take special values as parameters or flags as an indication to
do some special processing. This constant is meant to be used by itself when you do not need
any other special constant value.

Examples

STRING ans
LET ans = NOCHAR (l
INPUTSTR •Run program now" ,ans,@XOE, 1. "yYNn• ,DBFS
IF (UPPER(ans) = NOCHAR(l I END

See Also
FALSE Constant, TRUE Constant

The PPL Development Kil 99

Chapter7 PPL Reference

DELA V Statement

100

Function
Pause execution for a specified period of clock ticks.

Syntax
DELAY ticks

ticks An integer expression with the number of clock ticks to pause.

Remarks
It is often desireable to wait for a precise time interval for various purposes. This function will
allow you to specify an interval to delay in clock ticks. One clock tick is approximately 1/18.2
of a second. So to delay for approximately one second, you should use DELAY 18. The basic
fonnula to use is (seconds to delay*l8.2) and then round off to the nearest whole number.
Note however that PPL doesn't support floating point arithmetic, so if you want to calculate the
delay interval at run time you should use something like (seconds to delay• 182)/10.

Examples

INTEGER i
PRINTLN "Countdown:
LET i = 10
WHILE (i >= 0) DO

PRINTLN "T minus ", i
DEC i
DELAY 18

ENDWHILE

See Also

SOUND Statement

The PPL Development Kit

PPL Reference Chapter7

DELETE Statement

Function
Delete a specified file from the disk it resides on.

Syntax
DELETE file

file A string expression with the drive, path and file name to delete.

Remarks
It is always a good idea to leave things as you found them (as much as possible). This
statement allows you to delete temporary files created by your PPE with the
FCREATE/FOPEN/FAPPEND statements.

Examples

INTEGER retcode
STRING s
FCREATE 1, "TMP. LST". O_WR, S_DB
LET s :: "START"
WHILE (LEN(sl > OJ DO

LET s :::
PRINTLN "Enter a name or ENTER alone to quit:"
INPUT "Name"' s
IF (LEN(s) > 0) FPUTLN l,s

ENDWHILE
FCLOSE 1
SHELL 1, retcode, "SORT", "< TMP. LST > TMP. SRT"
NEWLINE
PRINTLN "Unsorted List:"
PRINTLN •--------------"
DISPFILE "TMP.LST",DEFS
NEWLINE
PRINTLN "Sorted List:"
PRINTLN •--------------"
DISPFILE "TMP. SRT", DEFS
DBLB'l'B •'l'Ml'.LS'l'•
DBLE'l'B n'l'NP.SR'l'•

See Also
EXISTQ Function, FILEINFQ Function, READLINEQ Function, RENAME Statement

The PPL De,,elopment Kit /OJ

Chapter7 PPL Reference

DELUSER Statement

102

Function

Flag the user online on the current node for deletion.

Syntax
DELUSER

No arguments are required

Remarks

This slatement will set the delete user record flag to TRUE. This will merely flag
PCBSystemManager to pack out the user during the next pack operation. If you want to make
sure the user doesn't log back in before being packed out, use GETUSER, set his U_SEC and
U_EXPSEC variables to 0, and use the PUTUSER statement to write the changes to the user
record.

Examples

GETUSER
IF (U_CMNT2 : "BAO USER") THEN

PRINTLN "Just a friendly note to say. ft

PRINTLN "I hope you have a rot ten day! "
PRINTLN "Proceeding with automatic user record deletion.
DBLtJSBll
LET U_SEC = 0
LET U_EXPSEC = 0
PUTUSER

ENDIF

See Also

GETUSERStatement, PUTUSERStatement, U_EXPSEC Variable, U_SEC Variable

The PPL Development Kit

PPL Reference Chapter7

DIR Statement

Function

Execute the file directories command with desired sub-commands.

Syntax
DIR cmds

cmds A string expression with any desired sub-commands for the file directory
command.

Remarks
This statement will allow you to access file directories (the F command from the main menu).
and any file directory sub-commands, under PPE control. Note that this statement will destroy
any previously tokenized string expression. If you have string tokens pending at the time of
the DIR statment you should save them first and then retokenize after the DIR statement is
complete.

Examples

INTEGER retcode
SHOWOFF
OPENCAP "NEWFILES. LST". retcode
KBOSTUFF CHR(13)
Dla •a1S1.l.11ttsn
CLOSECAP
SHOWON
SHELL TRUE, retcode. ·PKZIP·. "-mex NEWFILES NEWFILES.LST"
KBDSTUFF •FLAG NEWFILES.ZIP"

See Also
BLT Stat,ment, JOIN Statement, QUEST Statement

The PPL De,,e/opment Kil 103

Chapter7 PPL Reference

DISPFILE Statement

104

Function
Display a specified (or alternate) file.

Syntax
DISPFILE file, flags

file A string expression with the file name (or base file name) to display.

flags An integer expression with alternate file flags.

Remarks
This statement will allow you to display a file to the user, and optionally to have PCBoard look
for alternate security, graphics, and/or language specific files. The flags parameter should be
0 for no alternate searching, GRAPH (1) for graphics specific searching, SEC (2) for security
specific searching, LANG (4) for language specific searching, or any combination thereof for
multiple alternate searches simultaneously.

Examples

STRING s
D:CSPPILB "IDIUA", SBC+GRUB+LAIIQ
INPUT "Option•, s

See Also

DISPSTR Statement, DISPTEXT StaJement, OPTEXT StaJement

The PPL Development Kit

PPL Reference Chapter7

DISPSTR Statement

Function

Display a string of text.

Syntax
DISPSTR str

str A string expression to display (or o/ofi.lename or !PPEfile to execute).

Remarks
This statement in intended to allow you to easily display a string to the user and provide some
of the functionality of DISPTEXT. If the string to display begins with a percent sign and is
followed by a valid file name, then the file will be displayed to the caller instead of the string.
Alternately, the string could begin with an exclamation mark (and be followed by a legal file
name) to run a PPE file.

Examples

STRING s
INPUT "String~, s
MSPHR a
LET s = "Regular string"
Dl:BPS'f'R •
D:tSPS'f'R •%C:\PCB\GD\BltDlln
DISPS'l'R •1 •+Pl'Sl'A'l'B()+•SUBSCR.PD"

See Also
DISPFILE Statement, DISPTEXT Stalement, OPTEXT Stalement

The PPL Development Kit 105

Chapter7 PPL Reference

DISPTEXT Statement

106

Function
Display a specified prompt from the PCBTEXT file.

Syntax
DISPTEXT rec, flags

rec An integer expression with the PCBTEXT record number to display.

flags An integer expression with display flags.

Remarks
This statement will allow you to display any prompt from the PCBTEXT file to the user
according to a set of display flags. Valid display flags are BELL, DEFS, LFAFTER,
LFBEFORE, WGIT, LOGITLEFT, and NEWLINE.

Examples

DISP'l'BXT 192, BELL-t-llBWLIIIB+LOGIT
HANGUP

See Also
DISPFILE Statement, DISPSTR Statement, OPTEXT Statement

The PPL Development Kil

PPL Reference Chapter7

DOINTR Statement

Function

Generate a system interrupt.

Syntax
DOINTR int, ax, bx, ex, dx, si, di, flags,ds, es

int An integer expression with the interrupt number to call (0 through 255).

others Integer expressions with 16-bit register values to pass to the interrupt (ax.
bx, ex, dx. si, and di are general purpose registers; ds and es are segment
registers; flags is the 80x86 processor status register).

Remarks
This statement allows practically unlimited flexibility in PPL. It allows you to access any
system service available via the BIOS (video, disk, time, etc), DOS or other third party
interface (DESQview, NETBIOS, !PX/SPX, Btrieve, etc). The possibilities are limited only by
your imagination. Values that are returned via register may be accessed via the REG ... O
functions. The values to pass to specific interrupts will vary by the interrupt and function
desired. WARNING!!! The DOINTR function can be a very valuable tool when used nisely:
it can also be extremely destructive when used improperly (either accidentally or
intentionally). Use it at your own risk!

Examples

Create subdirectory - DOS function 3!:lh
INTEGER addr
STRING path
LET path"" "C:\$TMPDIR$
VARADDR path. addr
DOill'l'll 21b, 3Jb, O, O,addr%00010000b, 0, 0, 0, ■44r/00010000b, 0
IF (REGCFIJ & (REGAX{J "' 3) l THEN

PRINTLN -Error: Path not found"
ELSE IF (REGCF(l & (REGAX I l "" 5) l THEN

PRINTLN -Error: Access Denied-
ELSE IF IREGCF(l) THEN

PRINTLN -Error: Unknown Errorft
ELSE

PRINTLN -oirectory successfully created.
ENDIF

See Also
B2WO Function, REG ... O Functions

Th, PPL Development Kit /07

Chapter 7 PPL Reference

DOW() Function

108

Function

Determine the day of the week of a particular date.

Syntax
DOW(dexp)

dexp Any date expression.

Return Type & Value

INTEGER Returns the day of the week from the specified date expression (dexp).
Valid return values are from O (Sunday) to 6 (Saturday).

Remarks
This function allows you to extract a particular piece of infonnation about a DA TE value, in
this case the day of the week of the date. The specified date can be any valid DATE
expression.

Examples

PRINTLN "Today is: ",DOW(DAH())

See Also
DATEO Function, DAYO Function, MONTHO Function, YEARO Function

The PPL Development Kit

PPL Reference Chapter7

DTROFF Statement

Function

Tum off the serial port DTR signaJ.

Syntax
DTROFF

No arguments are required

Remarks
This statement turns off the serial port DTR signal. Most modems take this condition to mean
that they should hang up on a caller, and this is how PCBoard uses it. This statement can be
used when you need to hangup on a caller but don't want PCBoard to perform it's logoff
processing. Simply tum off CD checking and keyboard timeout checking and issue the
DTROFF statement. Do whatever processing you want, then turn DTR. keyboard timeout
testing, and CD loss testing back on to allow PCBoard to recycle normally. Note that DTR
should remain off for a period of time to ensure that the modem has time to react to it.
Consider 1/2 second (about 9 clock ticks) a reasonable delay.

Examples

BOOLEAN flag
KBDCHKOFF
CDCHKOFF
D'l'ROl'F
DELAY 18
DTRON
SENDMODEM "ATDTS551212" ' Please don't really dial this number!
WAITFOR "CONNECT", flag, 60
IF (!flag) SPRINLN "No connect found in 60 seconds~
CDCHKON
KBDCHKON

See Also
BYE Statement, DTRON Statement, GOODBYE Statement, HANGUP Statement

The PPL Development Kit /09

Chapter7 PPL Reference

DTRON Statement

llO

Function

Tum on the serial port DTR signal.

Syntax
DTRON

No arguments are required

Remarks
This statement turns on the serial port DTR signal This statement should be used after you've
used the DTROFF slatement to hangup the modem when you need to hangup on a caller but
don't want PCBoard to perform it's logoff processing. Note that DTR should remain off for a
period of time, to ensure that the modem has time to react to it, before turning it back on.
Consider 1/2 second (about 9 clock ticks) a reasonable delay.

Examples

BOOLEAN flag
KBDCHKOFF
CDCHKOFF
DTROFF
DELAY 18
DTROII
SENDMODEM "ATDT5551212" Please don't really dial this number!
WAITFOR "CONNECT", flag, 60
IF (!flag) SPRINLN "No connect found in 60 seconds•
CDCHKON
KBDCHKON

See Also

BYE Statement, DTROFF StaJement, GOODBYE StaJement, HANGUP StaJement

The PPL Development Kit

PPL Reference Chapter7

ECHODOTS Constant

Function

Set the echo dots flag in an INPUTSTR or PROMPTSTR statement.

Value
I= lb= lo= lh

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to disable echoing of user
input and instead echo dots in place of the user's input. This is useful in situations where the
information being entered is confidential and shouldn't be revealed to any other party. A good
example of this is the user's password.

Examples

STRING pwd
PROMPTSTR 148,pwd, 12,MASK_PWO() ,BCIIODO'l'S+UPCASE
GETUSER
IF (pwd <> U_PWD) HANGUP

See Also
INPUTSTR Statement, PROMPTS TR Statement

The PPL Development Kil Ill

Chapter7 PPL Reference

END Statement

112

Function
Terminate PPE execution.

Syntax
END

No arguments are required

Remarks
This statement may be used to nonnally tenninate PPE execution at any point. If you do not
have one in your program one is automatically inserted at the end of your source for you at
compile time. Additionally, if your PPL application is being used as a script questionnaire,
this statement will save any responses written to channel O to the script answer file.

Examples

DATE d
INTEGER i
STRING s
LET s = "01-20-93"
LETd=s
IF (DATE() < di THEN

PRINTLN •Your calendar is off! -...,
ENDIF
LETi=d
PRINTLN ~The seige continues: Day •,DATE()-i+l ...,

See Also

RETURN StaJement, STOP StaJement

The PPL Development Kil

PPL Reference Chapter7

ERASELINE Constant

Function
Set the erase line flag in an INPUTSTR or PROMPTSTR statement.

Value

32 - 100000b - 400 - 20h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to erase the current line after
the user presses ENTER. This is the technique used by the MORE and WAIT statements to
clean up after themselves.

Examples

STRING s
INPUTSTR ·Press ENTER to continue•, s,@XOE, 0, "", BRASBLJ:NE

See Also
INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kil 113

Chapter7 PPL Reference

EXIST() Function

114

Function
Detennine whether or not a file exists.

Syntax
EXIST(file)

file A string expression with the drive. path and file name to check.

Return Type & Value

BOOLEAN Returns TRUE if the file exists on the specified drive and path, FALSE
othenvise.

Remarks
It is often necessary to check for the existence of a file. For example, you wouldn't want to
display or otherwise process a file that doesn't exist. This function will report whether or not a
specified file exists on a particular drive and path. The drive will default to the current drive
and the path will default to the current directory if not specified.

Examples

STRING file
LET file= "NEWS."+STRING(CURNODE())
IF (BX:tS'r(fil•)) OISPFILE file, 0

See Also

DELETE Stalement, FILEINFO Function, READLINEQ Function, RENAME Stalement

The PPL Development Kil

PPL Reference Chapter 7

FALSE Constant

Function

To provide a named constant for the boolean false value in boolean expressions.

Value
0 =Ob= Oo = Oh

Remarks
BOOLEAN logic is based on two values: TRUE (I) and FALSE (0). The literal numeric
constants O and I may be used in expressions. or you may use the predefined named constants
TRUE and FALSE. They make for more readable, maintainable code and have no more
overhead than any other constant value at run time.

Examples

BOOLEAN flag
LET flag = TRUE
WHILE (!flag) DO

INPUTSTR "Text". S, @XOE. 60, "ABCDEFGHI.JKLMNOPQRSTIJVWX'{Z ", UPCASE
PRINTLN s
IF (S = "QUIT") LET flag = FALSE

ENDWHILE

See Also
DEFS Constant, TRUE Constant

The PPL Development Kit HJ

Chapter7 PPL Reference

FAPPEND Statement

116

Function

Open a file for append access.

Syntax
FAPPEND chan, file, am, sm

chan An integer expression with the channel to use for the file (0 through 7).

file A string expression with the file specification to open.

am An integer expression with the desired access mode for the file.

sm An integer expression with the desired share mode flags for the file.

Remarks
This statement aHows a PPL application to open a file for append access. Often you need to
add information to an existing file without destroying the existing infonnation in the file.
FCREA TE completely destroys the file being opened if it already exists. and FOPEN will
simply position you at the beginning of the file where you would ovenvrite data. This
statement will aJlow you to add the necessary information to the end of a file without
destroying the file or any existing information in the file. The chan parameter must be 0
through 7; 0 is reserved for the answer file when a PPL script questionnaire is in use but is
available for all other applications. However, it is recommended you avoid channel 0 unless
you really need to open 8 files at once. The am parameter should be one of the following
constant values: O_RD (for read access), O_ WR (for write access), or O_RW (for read/write
access). Note that the FAPPEND statement actually requires O_RW access: whatever you
specify doesn't really matter as it will be overridden by PPL. but you must specify it to
maintain compatibility with the FCREATE and FOPEN statements. Finally. the sm
parameter should be one of the following constants: S_DN (for deny none sharing), S_DR
(for deny read sharing). S_DW (for deny write sharing). or S_DB (for deny both sharing).
Also, if the file specified doesn't exist, it will automatically be created.

Examples

l'APPEHD 1, nc: \PCB\KAIR\PPB.LO(P ,O_RW,S_DB
FPUTLN l,•Ran "+PPENAME()+" on "+STRING(DATElll+" at -+STRINGITIMEI))
FCLOSE 1

See Also

FCLOSE Statement, FCREATE Statement, FOPEN Stalement, FREWIND Statement

The PPL Development Kit

PPL Reference Chapter 7

FCL Constant

Function

Forces PCBoard to count lines and provide prompts after every screen full of information.

Value
2=10b=2o=2h

Remarks
The STARTDISP statement takes a single argument to start displaying infonnation in a
certain format. FCL tells PCBoard to count lines and pause as needed during the display of
information. FNS tells PCBoard to not stop during the display of information. NC instructs
PCBoard to start over with the last specified mode (FCL or FNS).

Examples

INTEGER i
STARTDISP PCL
FOR i = 1 to 100

PRINTLN •This is line ", i
NEXT

See Also

FNS Constant, NC Constant

The PPL Development Kit 117

Chapter7 PPL Reference

FCLOSE Statement

llB

Function
Close an open file.

Syntax
FCLOSE chan

chan An integer expression with the open channel to close (0 through 7).

Remarks
This statement should be used to close a file channel after it has been created/opened with an
FCREATE, FOPEN, or FAPPEND statement. If you should forget to close your files by the
end of your PPL application, PPL will automatically close them for you. However, if you need
to process many files, it will usually be required that you open a few at a time and close them
before going on to the next set of files.

Examples

FOPEN l, "C: \PCB\Mi,IN\PPE. LOG" ,O_RD, s_ow
FGET l, hdr
FCLOSB 1
IF lhdr <> "Creating PPE.LOG file ... -1 THEN

PRINTLN -Error: PPE. LOG invalid'
ENO

ENDIF

See Also
FAPPEND Statement, FCREATE Statement, FOPEN Statement, FREWIND Statement

The PPL Development Kit

PPL Reference Chapter7

FCREATE Statement

Function
Create and open a file.

Syntax
FCREATE chan, file, am, sm

chan An integer expression with the channel to use for the file (0 through 7).

file A string expression with the file specification to create and open.

am An integer expression with the desired access mode for the file.

sm An integer expression with the desired share mode flags for the file.

Remarks
This statement allows a PPL application to force the creation and opening of a file. even if it
already exists. Creation means that any information previously in the file (if it already exists)
will be lost and you will be starting over with an empty file. The chan parameter must be O
through 7; 0 is reserved for the answer file when a PPL script questionnaire is in use but is
available for all other applications. However. it is recommended you avoid channel O unless
you really need to open 8 files at once. The am parameter should be one of the following
constant values: O_RD (for read access), O_ WR (for write access), or O_RW (for read/write
access). Note that the FCREATE statement forces the creation of an empt file so it doesn't
make much sense to use O_RD, as there is nothing to read, unless you only want to create the
file. Finally, the sm parameter should be one of the following constants: S_DN (for deny
none sharing), S_DR (for deny read sharing), S_DW (for deny write sharing). or S_DB (for
deny both sharing).

Examples

PCltBA'rB 1, •c:\PCB\DIN\PPB,LOC;n,o_WR,S_ml
FPUTLN 1. "Creating PPE.LOG file . "
FCLOSE 1

See Also
FAPPEND Statement, FCLOSE Statement, FOPEN Statement, FREWIND Statement

The PPL Development Kit 119

Chapter7 PPL Reference

FERR() Function

120

Function
Determine whether or not an error has occurred on a channel since last checked.

Syntax
FERR(chan)

chan An integer expression with the channel to use for the file (0 through 7).

Return Type & Value

BOOLEAN Returns TRUE if an error has occurred on the specified channel since last
checked, FALSE otherwise.

Remarks
There are many reasons why errors can occur during file processing. The drive, path or file
may not exist, the end of the file may have been reached, the drive may be full, there could be
errors with the hardware. and so on. For maximum reliability, you should use the function to
check for errors after every file channel statement. PCBnard will automatically handle
alerting the user of the error in most cases. All you need is to know that an error occurred so
that you may continue processing else where or clean up and exit.

Examples

INTEGER i
STRING s
FOPEN 1, "FILE.DAT" ,O_RD. S_DW
IF (FBRJl(l)) THEN

PRINTLN "Error. exiting.
END

ENDIF
FGET 1. s
WHILE (!FBRll(l) I DO

INC i
PRINTLN "Line ",RIGHT(i,3J,•: •,s
FGET l,s

ENDWHILE
FCLOSE 1

See Also

FAPPEND Statement, FCLOSE Statement, FCREATE Statement, FGET Statement,
FOPEN Statement, FPUT Statement, FPUTLN Statement, FPUTPAD Statement,
FREWIND Statement

Tire PPL Development Kit

PPL Reference Chapter 7

FGET Statement

Function

Get (read) a line from an open file.

Syntax
FGET chan, var

chan An integer expression with the channel to read from (0 through 7).

var The variable into which to read the next line from chan.

Remarks
This statement is to be used for reading infonnation, a line at a time, from a file that was
previously opened with read access. If there are multiple fields of information on the line then
you must parse them out manually.

Examples

INTEGER i
STRING s
FOPEN l, "FILE.DAT",O_RD,S_DW
IF (FERR(l) l THEN

PRINTLN "Error, exiting.
END

ENDIF
FGB'l' 1, ■
WHILE (!FERR(l)) DO

INC i
PRINTLN "Line ",RIGHT(i,3)," ",S
FGB,'l' 1,.

ENDWHILE
FCLOSE 1

See Also
FPUT/FPUTLN Stalements, FPUTPAD Stlllement

The PPL Development Kit 121

Chapter 7 PPL Reference

122

FIELDLEN Constant

Function
Set the display field length flag in an INPUTSTR or PROMPTSTR statement.

Value
2 = !Ob= 2o = 2h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to display the length of an
input field using 11 ()" if the user has ANSI available. If you want to ensure that the user
knows how wide the input area is regardless of ANSI support being available, also use the
GUIDE constant.

Examples

STRING pwd
INPUTSTR "Enter id number• ,pwd, @X0E,4, "0123456789" ,FIBLt>LD+GUIDE
IF {pwd <> "1234") PRINTLN "Bad id number"

See Also
GUIDE Constant, INPUTSTR StaJement, PROMPTSTR StaJement

The PPL Development Kil

PPL Reference Chapter7

FILEINF() Function

Function
Access a piece of infonnation about a file.

Syntax
FILEINF(file, item)

file A string expression with the path and file name to access infonnation
about.

item An integer expression with the desired piece of infonnation (l through 9)
to retrieve about the specified file.

Return Type & Value

BOOLEAN

DATE

INTEGER

4

STRING

6

7

8

9

TIME

Remarks

Returns TRUE if the file exists or FALSE if file doesn't exist if item is I.

Returns the date stamp of the file if item is 2.

Returns one of the following for the specified ,·alucs of item:

The size of the file in bytes;

The attribute bits of the file.

Returns one of the following for the specified \'alucs of item:

The drive of the file:

The path of the file:

The base name of the file:

The extension of the file.

Returns the time stamp of the file if item is 3.

This function is designed to return information about a file. The file date. time. si1.e and
attributes are accessible from DOS. In addition. this function can parse out the dri,·c. path.
base name and extension if needed from the complete file specification. Finally. the EXISTO
function is duplicated in FILEINFQ.

The PPL Development Kit 113

Chapter7

JU

Examples

STRING file
\•/HILE (FILBINF file. 1) l INPUT "File' • file
PRINTLN' Date ",FJ:LEJ:NF(file,2)
PRINTLN" Time ",FJ:LB:INF(file,3)
PRINTLN Size ",FJ:LE:DIF(file,4)
PRINTLN . Attr ",PJ:LEJ:NF(file,S)
PRINTLN "Drive ",FJ:LEJ:NF(file, 6)
PRINTLN' Path ",FJ:LE:INF(file,7)
PRINTLN " Name ", P:ILB:INF(file, 8)
PRINTLN Ext '',FJ:LEJ:lfl'(file,9)

See Also

PPL Reference

DELETE Statement, EXISTO Func.1ion, READLINEO Function, RENAME Statement

The PPL Development Kit

PPL Reference Chapter7

FMTCCO Function

Function
Formats a credit card number for display purposes.

Syntax
FMTCC I sexp I

sexp Any string expression.

Return Type & Value

STRING Returns sexp formatted in a credit card style for display purposes.

Remarks
This function will do one of the following: one, take a 13 character string and fonnat it as
"XXXX XXX XXX XXX" ~ two, take a 15 character string and format it as "XXXX xxxxxx
xxxxx" ; three, take a 16 character string and fonnat it as "XXXX xxxx xxxx XXXX": or
four, return the string unmodified ifit is not 13, 15 or 16 characters long.

Examples

STRING s
WHILE (!VALCC(s) l DO

INPUT ·cc 11-·. s
NEWLINES 2

ENDWHILE
PRINTLN CCTYPE(s), • - ",nl'rC:C:(a)

See Also
CCTYPEO Function, VALCCO Function

The PPL Development Kit 125

Chapter 7 PPL Reference

126

FNS Constant

Function

Forces PCBoard to not stop to provide prompts while displaying information.

Value

I= lb= lo= lh

Remarks
The STARTDISP statement takes a single argument to stan displaying information in a
certain format. FCL tells PCBoard to count lines and pause as needed during the display of
information. FNS tells PCBoard to not stop during the display of information. NC instructs
PCBoard to stan over with the last specified mode (FCL or FNS).

Examples

INTEGER i
STARTDISP 1'118
FOR i = 1 to 100

PRINTLN "This is line ", i
NEXT

See Also

FCL Constant, NC Constant

The PPL Development Kit

PPL Reference Chapter7

FOPEN Statement

Function
Open a file.

Syntax
FOPEN chan, file, am, sm

chan An integer expression with the channel to use for the file (0 through 7).

file A string expression with the file specification to open.

am An integer expression with the desired access mode for the file.

sm An integer expression with the desired share mode flags for the file.

Remarks
This statement allows a PPL application to open a file for read and/or write access and to
specify the method of sharing desired. The chan parameter must be 0 through 7: 0 is reserved
for the answer file when a PPL script questionnaire is in use but is available for all other
applications. However, it is recommended you avoid channel 0 unless you really need to open
8 files at once. The am parameter should be one of the following constant values: O_RD (for
read access), O_WR (for write access), or O_RW (for read/write access). Note that the
O_RD constant expects the file to already exist; the other open constants will create the file if
it already doesn't exist. Finally. the sm parameter should be one of the following constants:
S_DN (for deny none sharing), S_DR (for deny read sharing), S_DW (for deny write sharing).
or S_DB (for deny both sharing).

Examples

STRING hdr
POPDI 1, "C: \l'CB\DIII\PPB.LOGn ,O_RD,S_IM
FGET 1,hdr
FCLOSE 1
IF {hdr <> ·creating PPE. LOG file . . •) THEN

PRINTLN "Error: PPE.LOG invalid"
END

ENDIF

See Also
FAPPEND Statement, FCLOSE Statement, FCREATE Statement, FREWIND Statement

The PPL De,,e/opmmt Kit 127

Chapter7 PPL Reference

FOR/NEXT Statement

128

Function
Execute a block of statments for a range of values.

Syntax
FOR var = start TO end [STEP inc]

statement (s)
NEXT

var

start

end

inc

The index variable for the loop that will be set to each value.

Any valid PPL expression.

Any valid PPL expression.

Any valid PPL expression. (I if not specified).

Remarks
A FOR loop can consist of one or more statements. At the beginning of the loop the specified
variable (var) is initialized to the start expression. It is then checked against the end
expression. If start is greater than end (for positive values of inc) or less than end (for
negative values of inc) then the loop terminates. Otherwise. all the statements in the loop are
executed in order. At the NEXT statement the inc value (I if not explicitly defined) is added
to var and the loop value is retested as described above.

Examples
BOOLEAN p(lOOJ
INTEGER i
POR i ., 1 '1'0 100 ' Initialize all to TRUE

LET p{i) = TRUE

"""" LET p(l) = FALSE
POR i ., , '1'0 100 BHP 2 ' Initialize every other one to FALSE

LET p(iJ = FALSE

""""
See Also

GOSUB Stalenu,nt, GOTO Stalement, IF/ELSEIF/ELSE/ENDIF Statement,
WHILE/ENDWHILE Statement, RETURN Statement

The PPL De,,e/opment Kil

PPL Reference Chapter7

FORWARD Statement

Function
Move the cursor forward a specified number of columns.

Syntax
FORWARD numcols

numcols An integer expression of the number of columns to move forward. Va1id
values are 1 through 79.

Remarks
This statement will move the cursor forward, nondestructively, a specified number of columns.
It will work with or without ANSI. If ANSI is available (as reponed by the ANSIONO
function) then it will use an ANSI positioning command; otherwise it will re-display the
specified number of characters that are already on screen. ANSI is usually faster. but
re-displaying the existing infonnation will get the job done. Note that you cannot use this
function to move beyond colwnn 80; to do so would require ANSI to move back up if
necessary. So, if the cursor is already in colwnn 80 this statement will have no effect. And if
the cursor is in column I the maximum you could move fonvard would be 79 (column I + 79
columns = column 80).

Examples

PRINT •PIRNT is wrong"
DELAY 5*182/10
BACKUP 13
PRINT ·ar·
P0ll1GIU)6
PRINT •RIGHT"
DELAY 5*182/10
NEWLINE
WAIT

See Also
ANSIONO Function, ANSIPOS Stale,nent, BACKUP StaJement, GETXO Function,
GETYO Function, GRAFMODEO Function

The PPL Development Kit 129

Chapter7 PPL Reference

FPUT/FPUTLN Statements

130

Function
Put (write) a line to an open file (with an optional carriage return/line feed appended).

Syntax
FPUT chan, exp { , exp)
-or-
FPUT chan I, exp [, exp I I

chan An integer expression with the channel to write to (0 through 7).

exp An expression of any type to evaluate and write to chan.

Remarks
These statements will evalutate zero, one or more expressions of any type and write the results
to the specified channel number. The FPUTLN statement will append a carriage return/line
feed sequence to the end of the expressions; FPUT will not. Note that at least one expression
must be specified for FPUT, unlike the FPUTLN statement which need not have any
arguments passed to it other than the channel number.

Examples

FAPPEND l,"FILE.DAT",O_WR,S_DB
FPU'l! 1,'D'_RAIIII:()," ",DI.U()
FPU'l'LII 1,• ",'J!INB()," •,CUJUIBC'()
FPU'r 1, "Logged I ■
FPU'l!LII 1
F.uTLIII 1, •eave a nice"+" dayl 11

FCLOSE 1

See Also

FGET Statement, FPUTPAD Statement

The PPL Development Kit

PPL Reference Chapter7

FPUTPAD Statement

Function
Put (write) a line of a specified width to an open file.

Syntax
FPUT chan,exp,width

chan An integer expression with the channel to write to (0 through 7).

An expression of any type to evaluate and write to chan. exp

width An integer expression with the width to use to write exp. Valid rnlues arc
-256 through 256

Remarks
This statement will evalutate an expressions of any type and write the result to the specified
channel number. This statement will append a carriage return/line feed sequence to the end of
the expression after padding it to the specified. width with spaces. If width is positi\'C. then
exp will be written right justified (left padded) to the file. If width is negative. then exp will be
written left justified (right padded) to the file.

Examples

FAPPEND 1, "FILE.DAT" ,O_WR, S_DB
FPD'l'PAD 1,lJ_DMB(),40
FPO'l'l'AD 1,U'_DATB(),20
PPO'l'PAD 1,lJ_TIMBl),20
FCLOSE 1

See Also
FGET StaJement, FPUT/FPUTLN Statements

The PPL Development Kit 131

Chapter 7 PPL Reference

FRESHLINE Statement

132

Function
Move the cursor to a fresh line for output.

Syntax
FRESHLINE

No arguments are required

Remarks
Often while displaying information to the screen you will print a certain amount then want to
make sure you are on a clean line before continuing. This statement checks to see if you are in
column I of the current line. If you are, it assumes you are on a clean line and does nothing.
Otherwise, it calls the NEWLINE statement for you automatically.

Examples

INTEGER i. end
LET end = RANDOM(20)
F0Ri=lT0end

PRINT RIGHT(RANDOM(l0000), 8)
NEXT
FRBSRLINE
PRINTLN "Now we continue ... "

See Also
NEWLINE Statement, NEWLINES Statement

The PPL Development Kit

PPL Reference Chapter7

FREWIND Statement

Function
Rewind an open file.

Syntax
FREWIND chan

chan An integer expression with the open channel to rewind (0 through 7).

Remarks
This statement should be used when you need to rewind a file channel after it has been
created/opened with an FCREATE, FOPEN. or FAPPEND statement. Rewinding a file
channel will flush file buffers, commit the file to disk, and reposition the file pointer to the
beginning of the file. This is useful when you need to start over processing a file that may
have changed and don't want to close and re-open the file.

Examples

STRING s
FAPPEND 1, •c: \PCB\MAIN\PPE.LOG". O_RW, S_DN
FPUTLN 1, U_NAME (J
PRJ:WIND 1
WHILE (!FERR(l)) DO

FGET l,s
PRINTLN s

ENDWHILE
FCLOSE 1

See Also
FAPPEND Statement, FCLOSE Statement, FCREATE Statement, FOPEN Statement

The PPL Development Kit 133

Chapter 7 PPL Reference

134

F _EXP Constant

Function
Set the conference expired access flag in a CONFFLAG or CONFUNFLAG statement.

Value
2-10b-2o-2h

Remarks
There are five flags per conference maintained for each user. This flag is used to indicate
whether or not a user is registered in a specified conference after their subscription expiration
date.

Examples

CONFUNFLAG 5,F_REG+F_BXl'+F_SEL Clear reg, exp & sel flags from conf 5
CONFFLAG 9, F _REG+P _EXP+F _SEL Set reg, exp & sel flags for conf 9

See Also
F_MW Constant, F_REGConstant, F_SEL Constant, F_SYS Constant

The PPL De11elopment Kit

PPL Reference Chapter7

F _MW Constant

Function

Set the conference mail waiting flag in a CONFFLAG or CONFUNFLAG statement.

Value
10 - 10000b - 200 - IOh

Remarks
There are five flags per conference maintained for each user. This flag is used to indicate
whether or not a user has mail waiting in a specified conference.

Examples

CONFUNFLAG 5,:l'JIW · Clear mail waiting flag from conf 5
CONFFLAG 9,l'Jllf · Set mail waiting flag for conf 9

See Also
F_EXP Const11nt, F_REGCon.stant, F_SEL Constant, F_SYS Constant

The PPL Development Kit 135

Chapter 7 PPL Reference

136

F _REG Constant

Function
Set the conference registration flag in a CONFFLAG or CONFUNFLAG statement.

Value
1 = lb= lo= lh

Remarks
There are five flags per conference maintained for each user. This flag is used to indicate
whether or not a user is registered in a specified conference.

Examples

CONFUNFLAG 5,l'_UG+F_EXP+F_SEL Clear reg, exp & sel flags from conf 5
CONFFLAG 9, I' _RBG+F _EXP+F _SEL Set reg, exp & sel flags for conf 9

See Also
F _EXP Constant, F _MW Constant, F _SEL Constant, F _ SYS Constant

The PPL Development Kit

PPL Reference Chapter7

F _SEL Constant

Function

Set the conference selected flag in a CONFFLAG or CONFUNFLAG statement.

Value
4= 100b=4o=4h

Remarks
There are five flags per conference maintained for each user. This flag is used to indicate
whether or not a user has a specified conference selected for message scans.

Examples

CONFUNFLAG 5,F_REG+F_EXP+F_SBL ' Clear reg, exp & sel flags from conf 5
CONFFLAG 9,F_REG+F_EXP+l'_SBL ' Set reg, exp & sel flags for conf 9

See Also
F_EXP Constant, F_MW Constant, F_REG Constant, F_SYS Constant

The PPL Development Kil B7

Chapter 7 PPL Reference

138

F _SYS Constant

Function
Set the conference SysOp access flag in a CONFFLAG or CONFUNFLAG statement.

Value
8= 1000b= !Oo=8h

Remarks
There are five flags per conference maintained for each user. This flag is used to indicate
whether or not a user has conference SysOp access in a specified conference.

Examples

CONFUNFLAG 5,F_SYS Remove (unflag) conf sysop access from conf 5
CONFFLAG 9,F_SYS Grant (flag) conf sysop access for conf 9

See Also
F_EXP Constant, F_MW Constant, F_REG Constant, F_SEL Constant

The PPL Development Kit

PPL Reference Chapter7

GETENV() Function

Function
Access the value of an environment variable.

Syntax
GETENV (name)

name A string expression with the name of the environment variable to access.

Return Type & Value

STRING Returns the value of the environment variable specified by name.

Remarks
This function allows you to access the value of any environment variable set at the time that
PC Board was started. So. for example, the PA TH environment variable could be used to
access data files somewhere on the path.

Examples

STRING path
LET path : GB'l'BRVI)
TOKENIZE path
LET path = "DATAFILE. TXT"
WHILE I ! EXIST (path) & (TOKCOUNT () > 0)) DO

LET PATH "' GETTOKEN()+"DATAFILE.TXT•
ENDWHILE
IF (EXIST (path)) PRINTLN "Found ",path.

See Also
PCBDATO Function

The PPL Development Kit 139

Chapter7 PPL Reference

GETTOKEN Statement

uo

Function

Retrieve a token from a previous TOKENIZE statement.

Syntax
GETTOKEN var

var Variable to store the retrieved token in.

Remarks
One of the strongest features of PCBoard is it's ability to take a series of stacked parameters
from a command line and use them all at once instead of requiring the user to navigate a series
of menus and select one option at each step of the way. The TOKENIZE statement is the PPL
equivalent of what PC Board uses to break a command line into individual commands (tokens).
The number of tokens available may be accessed via the TOKCOUNT0 function, and each
token may be accessed, one at a time, by the GETTOKEN statement and/or the
GETTOKEN0 function.

Examples

STRING cmdline
INPUT "Command", cmdline
TOKENIZE cmdline
PRINTLN "You entered "' TOKCOUNT I l ' M tokens"
WHILE (TOKCOUNT() > 01 DO

GE'l"l'OKBN cmd.liaa
PRINTLN "Token: ",CHR(34) ,cmdline,CHR(34)

ENOWHILE

See Also

GETTOKENO Function, TOKCOUNTO Function, TOKENIZE Statement,
TOKENSTRO Function

The PPL Development Kit

PPL Reference Chapter7

GETTOKEN() Function

Function
Retrieve a token from a previous TOKENIZE statement.

Syntax
GETTOKEN()

No arguments are required

Return Type & Value

STRING Returns the next available token from the most recent TOKENIZE
statement.

Remarks
One of the strongest features of PCBoard is it's ability to take a series of stacked parameters
from a command line and use them all at once instead of requiring the user to navigate a series
of menus and select one option at each step of the way. The TOKENIZE statement is the PPL
equivalent of what PCBoard uses to break a command line into individual commands (tokens).
The number of tokens available may be accessed via the TOKCOUNTO function. and each
token may be accessed, one at a time, by the GETTOKEN statement and/or the
GETTOKENO function.

Examples

STRING cmdline
INPUT ~command", cmdline
TOKENIZE cmdline
PRINTLN nyou entered ", TOKCOUNT (l , " tokens"
WHILE (TOKCOUNT (J > 0) DO

LET cmdline = GB'l''l'ODII()
PRINTLN nToken: '',CHR(34) ,cmdline.CHR(34)

ENDWHILE

See Also
GETTOKEN Statement, TOKCOUNTO Function, TOKENIZE Statement,
TOKENSTRO Function

The PPL Development Kit U/

Chapter7 PPL Reference

GETUSER Statement

142

Function
Fill predeclared variables with values from user record.

Syntax
GETUSER

No arguments are required

Remarks
There are many predeclared variables which may be used to access and change user
information. However, their values are undefined until you use the GETUSER statement, and
any changes you make don't take hold until you use the PUTUSER statement.

Examples

IF (PSA(J)) THEN
GBrtJSBR
INPUT "Addr l',U_ADDR(O)
INPUT "Addr 2',U_ADDR(ll
INPUT "City ',U_ADDR(2J
INPUT "State ",U_ADDR(3)
INPUT "ZIP ",U_ADDR(4)
INPUT "Cntry ",U_ADDRIS)
PUTUSER

ENDIF

See Also
PUTUSER Statement

The PPL Development Kit

PPL Reference

GETX() Function

Function
Report the X coordinate (column) of the cursor on screen.

Syntax
GETX()

No arguments are required

Return Type and Value

INTEGER Returns the column (1-80) of the cursor on screen.

Remarks

Chapter7

This function is used to query the ANSI emulator in PCBoard the current X position of the
cursor. It may be used for saving the cursor position for future use or for saving the horizontal
cursor position while changing the vertical position with the ANSIPOS statement.

Examples

INTEGER x,y
STRING s

WHILE (UPPER(sl

INPUT "Text", s
PRINTLN " - • , s

LET X = GB!l"X()
LET y = GET'i()
IF (y = 23) THEN

CLS
LET X = GB!l'X()
LET y = GETY(I

ENDIF

ANSIPOS 40, 23
PRINT "@X8Fs= • , s
ANSIPOS x,y

ENDWHILE

See Also

"QUIT") DO

ANSIPOS Statement, ANSIONO Function, BACKUP Statement, FORWARD Statement,
GETYO Function, GRAFMODEO Function

Tire PPL Development Kit U3

Chapter7 PPL Reference

GETY() Function

144

Function
Repon the Y coordinate (row) of the cursor on screen.

Syntax
GETY()

No arguments are required

Return Type and Value

INTEGER Returns the row (1-23) of the cursor on screen.

Remarks
This function is used to query the ANSI emulator in PCBoard the current Y position of the
cursor. It may be used for saving the cursor position for future use or for saving the verticle
cursor position while changing the horizontal position with the ANSIPOS statement.

Examples

INTEGER x,y
STRING s

WHILE {UPPER(sJ

INPUT •Text". s
PRINTLN • - • , s

LET x"' GETX()
LET y = GBTY()
IF (y "' 23) THEN

CLS
LET x = GETX()
LET y = GB'l'Y()

ENDIF

ANSIPOS 40, 23
PRINT "@XBFs= ', s
ANSIPOS x,y

ENDWHILE

See Also

"QUIT") DO

ANSIPOS Stalement, ANSION0 Function, BACKUP Stalement, FORWARD Stalement,
GETX0 Function, GRAFMODE0 Function

Tire PPL Development Kit

PPL Reference Chapter7

GOODBYE Statement

Function
Leg the user off as though they had typed the G (goodbye) command,

Syntax
GOODBYE

No arguments are required

Remarks
There are multiple ways for the user to log off. One is by typing G at the command prompt.
That will warn them if they have files flagged for download and (optionally) confirm their
selection (incase they accidentally hit G and ENTER). Another is the BYE command,
PCBoard assumes that, if the user typed BYE instead of G, that they really want to log off,
didn't type it in accidentally, and want to leave now. The GOODBYE statement performs the
same processing as the PCBoard G command.

Examples

STRING s
INPUT •What do you want to do", s
IF (s::: "G•) THEN CJ00DBYB
ELSEIF (s = "BYE•) THEN BYE
ELSE KBDSTUFF s
ENDIF

See Also
BYE Statement, DTROFF Statement, DTRON Statement, HANGUP Statement

The PPL Development Kit U5

Chapter7 PPL Reference

GOSUB Statement

146

Function
Transfer program control and save the return information.

Syntax
GOSUB label

label

Remarks

The label to which control should be transferred.

It is often necessary to perform an indentical set of instructions several times in a program.
This leaves you with two choices. One, rewrite the code several times (and hope you do it
right each time). or two, write it once as a subroutine, then use GOSUB to ron it. This
statement will save the address of the next line so that a RETURN statement at the end of the
subroutine can instruct PPL to resume execution with the line following the GOSUB.

Examples
STRING Question, Answer
LET Question = •What is your street address
GIOSDB a■k
LET Question = "What is your city, state and zip
OOstJB ask
END

:ask ' Sub to ask a question, get an answer, and log them to a file
LET Answer = •"
PRINTLN "@.XOE·. Question
INPUT " " , Answer
NEWLINES 2
FPUTLN 0, "Q: ",STRIPATX(Question}
FPUTLN O. "A: " , Answer
RETURN

See Also
GOTO Statement, FOR/NEXT Statement, IF/ELSEIF/ELSE/ENDIF Statemenl,
WHILE/ENDWHILE Statement, RETURN Statement

The PPL Development Kit

PPL Reference Chapter7

GOTO Statement

Function
Transfer program control.

Syntax
GOTO label

label The label to which control should be transferred.

Remarks
GOTO is an essential pan of just about every programming language, and it is also an
overused part of every one of those languages. When you need to make a decision and alter
program flow based on some condition it is a necessary evil For example. it is very useful in
getting out of deeply nested loops when a critical error of some sort occurs. For the most part.
avoid it if at all possible. Look for other options to write your program. such as block IF.
WHll,E, and FOR statements. They are much easier to understand and maintain than code
with GOTO statements sprinkled liberally throughout.

Examples

INTEGER i
STRING s

FOPEN 1. "FILE.DAT" ,O_RD, s_ow

WHILE (UPPER(s) <> "QUIT") DO
FGET l,s
IF (FERR(l) J THEN

PRINTLN "Error, aborting ..
Q0'1'0 exit

ENDIF
INC i
PRINTLN "Line ",i,~: n,s

ENDWHILE

:exit
FCLOSE 1

See Also
GOSUB Statement, FOR/NEXT Statement, IF/ELSEIF/ELSE/ENDIF Statement,
WHILE/ENDWHILE State,,.,,nt, RETURN Statement

The PPL Development Kit 1-17

Chapter7 PPL Reference

GRAFMODE() Function

148

Function
Report the graphics mode in use.

Syntax
GRAFMODE()

No arguments are required

Return Type and Value

STRING Returns a letter indicating the current graphics supported.

Remarks
This function will return one of four possible responses. "N" will be returned if no graphics
support is currently available. "A" will be returned for non-graphics users that do have ANSI
support available for positioning. "G" will be returned for users who support full ANSI
graphics. Finally, "R" will be returned for users who support RIPscrip.

Examples

IF
ELSE IF
ELSE IF
ELSE IF
ELSE
ENDIF

(GllAJ'MODE(I
(GDPIIODZ()
(GRAPIIODB(I
(GltAPIIODB ()

"R") THEN PRINT •RIPscrip"
"G") THEN PRINT •Full ANSI•
"A") THEN PRINT ·ANSI positioning"
"N") THEN PRINT "No"

PRINT •unknown•

PRINTLN " Graphics Supported"

See Also
ANSIPOS Statement, ANSIONO Function, BACKUP Statement, FORWARD Statement,
GETXO Function, GETYO Function

The PPL Development Kit

PPL Reference Chapter 7

GRAPH Constant

Function
Set the graphics specific file search flag in a DISPFILE statement.

Value
1 = lb= lo= lh

Remarks
The DISPFILE statement will allow you to display a file to the user. and optionally to have
PCBoard look for alternate security, graphics, and/or language specific files. This flag
instructs PCBoard to search for alternate graphics files (ANSI or RIPscrip) via the G and R
suffix. The current graphics mode may be obtained with the GRAFMODEO function.

Examples

STRING s
DISPFILE "MNUA" ,SEC+GRAPB+LANG
INPUT "Option",s

See Also
DISPFILE StaJement, GRAFMODEO Function, LANG Constant, SEC Constant

The PPI~ lkvelanment Kil U9

Chapter 7 PPL Reference

150

GUIDE Constant

Function
Set the display input guide flag in an INPUTSTR or PROMPTSTR statement.

Value
4-l00b-4o-4h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to display the length of an
input field, regardless of ANSI availability, if you use this constant with the FIELDLEN
constant. If ANSI is not available and this constant is used, the user will see the input field
width marked using 11(---)11 above the input field.

Examples

STRING pwd
INPUTSTR "Enter id number",pwd,@.X0E,4,"0123456789",FIELDLEN+GUl'DB
IF (pwd <> "1234" l PRINTLN "Bad id number•

See Also
FIELD LEN Constant, INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit

PPL Reference

HANGUP Statement

Function
Hangup on the user and perfonn abnormal logoff processing.

Syntax
HANGUP

No arguments are required

Remarks

Chapter7

This statement is useful in situations where you need to get the caller off immediately without
any delay or notice. It will hangup on the caller, do all logoffproccssing, and log an abnonnal
logoff to the callers log.

Examples

STRING s
INPUT "What do you want to do". s
IF (s : "G~) THEN GOODBYB
ELSEIF (s : "BYE• J THEN BYE
ELSEIF (s = "HANG") THEN HANGUP
ELSE KBDSTUFF s
ENDIF

See Also
BYE Statement, DTROFF Statement, DTRON Statement, GOODBYE Statement

Th• PPL D,v,lopmn,t Kit lSl

Chapter7 PPL Reference

HELPPATH() Function

152

Function
Return the path of help files as defined in PCB Setup.

Syntax
HELPPATH()

No arguments are required

Return Type & Value

STRING

Remarks

Returns the path of the PCBoard help files.

This function will return the path where help files are located as defined in PCBSetup. This
can be useful when you want to add system help capabilities to your PPE application.

Examples

PRINTLN "HELP FOR THE R (READ) COMMAND:"
PRINTLN "------------------------------"
NEWLINE
DISPFILE IIBLPPA'l'B() + "HLPR•, GRAPH+LANG+SEC

See Also
PPEPATHQ Function, SLPATHO Function, TEMPPATHO Function

The PPL Development Kit

PPL Reference Chapter7

HIGHASCII Constant

Function
Set the allow high ASCII flag in an INPUTSTR or PROMPTSTR statement.

Value
4096 - 1000000000000b - 100000 - 1000h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to allow high ASCII
characters to be input regardless of the valid character string specified, but only if the SysOp
has disabled the high ASCII filter in PCBSetup.

Examples

STRING pwd
INPUTSTR "Enter password" , pwd, @XOE. 4. MASK_ASCII (l , HJ:CDl&SC:J:J:
GETUSER
IF (pwd <> U_PWDJ HANGUP

See Also
INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 153

Chapter7 PPL Reference

HOUR() Function

154

Function
Extract the hour from a specified time of day.

Syntax
HOUR(texp)

texp Any time expression.

Return Type & Value

INTEGER Returns the hour from the specified time expression (te:ip). Valid return
values are from Oto 23.

Remarks
This function allows you to extract a particular piece of infonnation about a TIME value, in
this case the hour of the time of day expression.

Examples

PRINTLN "The hour is ",ROtJR('l'IIIB())

See Also
MINO Function, SECO Function, TIMEO Function

The PPL Dl!W!/opment Kit

PPL Reference

12S() Function

Function
Convert an integer to a string in a specified number base.

Syntax
I2S(int,base)

int Any integer expression to convert to string format.

Chapter7

base An integer expression with the number base (2 through 36) to conYcrl to.

Return Type & Value

STRING Returns int converted to a string in the specified number base.

Remarks
People work with decimal (base 10) numbers, whereas computers work with binal')· (base 2)

numbers. However. it is often more convienient to display numbers to the user in a format
other than decimal for clarity, compactness, or other reasons. This function will con\'ert a
number to string format in any number base from 2 to 36. So. 12S(I0,2) would return a string
of II IO 10"; 12S(JS,36) would return 11Z".

Examples

INTEGER i' num
INPUTINT "Enter a number (decimal)" ,num,@XOE
FOR i = 2 TO 36

PRINTLN num," base 10"' ",I2S(Dwn,i)," base
NEXT

See Also
S210 Function

The PPL Development Kit 155

Chapter7 PPL Reference

IF/ELSEIF/ELSE/ENDIF Statement

156

Function
Execute one or more statments if a condition is true.

Syntax
IF (bexp) statement
-or-
IF I bexp) THEN

optional in a block IF
statement (s)

[ELSEIF (bexp) THEN]
[statement (s l]
[ELSEIF (bexp) THEN]
[statement (s l]
[ELSE)

you may have multiple ELSEIF statement (s)

[statement (sl]
ENDIF

optional in a block IF

bexp Any boolean expression.

statement Any valid PPL statement.

Remarks

The IF statement supports two types of structures: logical and block. A logical IF statement
is a single statement; if a condition is TRUE, execute a single statement. A block IF can be
one or more statements with multiple conditions to test for. The start of a block IF loop is
differentiated from a logical IF loop by the THEN keyword immediately after the condition.
In a block IF statement the first condition to evaluate to TRUE will be executed, after which
control will be transferred to the statement following the END IF. If none of the conditions are
TRUE by the time an ELSE statement is reached then the statements between the ELSE and
ENDIF will be processed. If none of the conditions are TRUE and an ELSE statement is
never found then none of the conditions will be executed: instead, control will be transferred to
the statement after the ENDIF.

Examples

J:I' (CURSB:C'() < 101 ENO Insufficient security. terminate execution
J:I' (c:tJRSBC'() < 20) ~

PRINTLN HY our security is less than 20"
ELSBJ:I' (c:tJRSBC'() > 301 'l'HBltt

PRINTLN "Your security is greater than 30"
BLSBJ:I' (CURSBC'(I c: 25) 'l'HBltt

PRINTLN "Your security is 25·
BLSB

PRINTLN "Your security is level" ,CURSEC ()
ENDJ:I!'

The PPL Development Kit

PPL Reference Chapter7

See Also
GOSUB Statement, GOTO Statement, FOR/NEXT Statement, WHILE/ENDWHILE
Statement, RETURN Statement

The PPL Development Kit 15•

Chapter7 PPL Reference

INC Statement

158

Function
Increment the value of a variable.

Syntax
INC var

var The variable with the value to increment

Remarks
Many programs require extensive addition and subtraction, and often a value is only increased
or decreased by 1. This statement allows for a shorter, more efficient method of increasing
(incrementing) a value by 1 (INC i) than adding 1 to a variable and assigning the result to the
same variable (LET i = i + 1).

Examples

INTEGER i
PRINTLN ~countdown: "
LET i = 0
WHILE {i <= 10) DO

PRINTLN "T plus • 'i
UIC: i

ENOWHILE

See Also

DEC Statement

The PPL Development Kit

PPL Reference

INKEY() Function

Function
Get the next key input.

Syntax
INKEY()

No arguments are required

Return Type and Value

Chapter7

STRING Returns a single character for displayable characters or a string for cursor
movement and function keys.

Remarks
This function will return a single character long string for most key presses. Additionally. it
will return key names for function keys and cursor movement keys if it finds an ANSI
sequence or DOORWAY mode sequence. It will return keystrokes from both the remote caller
as well as the local BBS node. However, realize that many function keys are reserved by
PCBoard for BBS related uses and may not be available for your applications that require
SysOpinput.

Examples

STRING key
WHILE (key <> CHR(27)) DO

LET key = INDY(I
IF (LEFT(key,5) = "SHIFT") THEN

PRINTLN "It was a shifted key"
ELSEIF (LEFT(key,4) = "CTRL") THEN

PRINTLN "It was a control key"
ELSEIF (LEFT(key,3) = "ALT•) THEN

PRINTLN "It was an alternate key"
ENDIF
PRINTLN •The key was ", key

ENDWHILE

See Also
KINKEYO Function, MGETBYTEO Fundion, MINKEYO Function

The PPL Development Kit 159

Chapter7 PPL Reference

INPUT Statement

160

Function

Prompt the user for a string of text.

Syntax
INPUT prompt, var

prompt A string expression with the prompt to display to the user.

var The variable in which to store the user's input.

Remarks
This statement will accept any string of input from the user, up to 60 characters maximum
length. In addition to displaying the prompt, it will display parenthesis around the input field
if the user is in ANSI mode. Because of this, you should generally limit your prompts to 15
characters or less.

Examples

BOOLEAN b
DATE d
INTEGER i
MONEY' m
STRING s
TIME t
IDUT "Bllter BOOLBU•,b
INMl'l' "Enter DA'l'Bn,4
INPU'r "Enter Ill'l'BGBR•,i
Intl"r •Enter IIORBY" ••
INPU'l' •Enter SftZIIG", •
Intrr •Enter 'l'IIIB",t
PRINTLN b," ",d, • • ,i
PRINTLN m," ",s,· •,t

See Also
INPUT ... Statements, INPUTSTR Statement, INPUTTEXT Statement, LET Statement,
PROMPTS TR Statement

The PPL Development Kit

PPL Reference Chapter7

INPUT ... Statements

Function

Prompt the user for a string of te.xt of a specific length and with type dependent valid
characters.

Syntax
INPUT. . . prompt, var, color

prompt A string expression with the prompt to display to the user.

var The variable in which to store the user's input.

color An integer expression "'ith the color to display the prompt in.
INPUT should be followed by one of the following types (without spaces between the INPUT
and type): CC, DATE, INT, MONEY, TIME. or YN.

Remarks
This statement will accept a string of input from the user, with a set of valid characters and up
to a maximum length (MAXLEN) determined by the statement in use. In addition to
displaying the prompt, it will display parenthesis around the input field if the user is in ANSI
mode. Because of this, you should generally limit your prompts to a length determined by the
following formula: (80-MAXLEN-4). Here are the valid character masks and maximum
length values for each of the input statements:

""'"' I "" I DATZ I IIIT I II01IBY I TIIIB I YU Val Cb.■r■ "0123,56789• •0123456789-/" "0123456789+-" •0123456789+-$." •0123456789: • •
Mu: Length 16 a 11 13 a 1

• The INPUTVN statement valid characters are dependent on the users language selection.
Usually they will be "YN" for english language systems. Other letters may be defined for
different languages in PCBML.DAT.

Examples

DATE d
INTEGER i
MONEY m
STRING cc, yn
TIME t
J:DUTCC "Enter Credit Ca.rd. JIWaber" • cc
J:IIPU'l'DAH •Bn.ter DA'l'B•,d
UIPU'l':tll'l' •Bater :tftBQBR• • i
J:IIPlJ'l!IIOIIBY •Enter IIOIIBY• ,m
:tNPU'l'T:tD •Enter 'l'J:NB•,t
:tlDU'l'YII •Enter Yea/mo Reaponae". a
PRINTLN cc, - ",d." ",i
PRINTLN m," ",t," ",yn

The PPL Development Kit 161

Chapter7

162

PPL Reference

See Also
INPUT Statement, INPUTSTR Statement, INPUTTEXT Statement, LET Statement,
PROMPTSTR StaJement

The PPL Developm,nt Kit

PPL Reference Chapter7

INPUTSTR Statement

Function

Prompt the user for a string of text in a specific format.

Syntax
INPUTSTR prompt, var, color, len, valid, flags

prompt A string expression with the prompt to display to the user.

var

color

len

valid

flags

Remarks

The variable in which to store the user's input.

An integer expression with the color to display the prompt in.

An integer expression with maximum length of text to input.

A string expression with the valid characters that the user may enter.

An integer expression with flags to modify how the statement works.

This statement will accept a string of input from the user. up to the length defined. The
prompt parameter will be displayed to the user in the specified color before accepting input.
Only characters found in the valid parameter will be accepted. However, the flags parameter
may affect how prompt is displayed and the valid characters that are accepted. Individual
flags may be added together as needed. Several functions exist to easily specify commonly
used valid character masks. They arc MASK_ALNUMO, MASK_ALPHAO.
MASK_ASCJIO, MASK_FILEO, MASK_NUMO. MASK_PATHO. and MASK_PWDO.
Defined flag values are AUTO, DEFS, ECHODOTS, ERASELINE, FIELDLEN. GUIDE.
HIGHASCII, LFAFTER, LFBEFORE, NEWLINE, NOCLEAR, STACKED. UPCASE.
WORDWRAP, and YESNO.

Examples

BOOLEAN b
DATE d
INTEGER i
MONEY m
STRING s
TIME t
IlfPO'l'S'l'Jl •BDt•r B00LEAJIP,b,9X0B, 1, •10•,LFBBFOJI.B+NBWLINB
J:NPU'l'S'l'Jl •Bater DA'1'B• ,4,-.X0F, 8, •0123,56789-n ,HBWLJ:NB+NOCLEAR
J:lfPO'l'S'l'R •Bater IN'l'BGBJl•,1.•xo7,20,IIUUIK_RUlll(),NBWLJ:NB
IlfPO'l'S'l'R •Bater MOJIBY• •xoa • 9, IIASK_ll'DII(I+•. • • NBWLJ:NB+DBFS+i'J:l:LDLBN
J:IIPtl'l'S'l'R •Bater S'l'RIIIGn • •• •xo9, 63, NASK_ASCIJ: 11 , NBWLJ:NB+PJ:BLDLBR+GOIDB
J:nu'l'S'l'll •Bllter 'l'IKB•,t,.X0A,5, •0ll3,56719•+n: n,NBWLINB+Li'AFTBR
PRINTLN b, • ,d, , i
PRINTLN m," •,s," ",t

The PPL Development Kit 163

Chapter 7

164

PPL Reference

See Also
INPUT Statement, INPUT... Statements, INPUTTEXT Statement, LET Statement,
PROMPTSTR Statement

The PPL Development Kit

PPL Reference

INPUTTEXT Statement

Function
Prompt the user in a specified color for a string of text of specified length.

Syntax
INPUTTEXT prompt, var, color, len

prompt A string expression with the prompt to display to the user.

color

len

Remarks

The variable in which to store the user's input.

An integer expression with the color to display the prompt in.

An integer expression with maximum length of text to input.

Chapter7

This statement will accept any string of input from the user, up to the length defined. In
addition to displaying the prompt, it will display parenthesis around the input field if the user
is in ANSI mode. Because of this, you should generally limit your prompts to (80-lcn-.J)
characters or less.

Examples

BOOLEAN b
DATE d
INTEGER i
MONEY m
STRING s
TIME t
J:lt1PlJ'l!'l'BXT "Bnter BOOLUR•,b,llXOB,1
J:RPtJ'l'TEXT "Bnter llA'l'B",d,IIX0'J',8
J:IIIPtJ"l'TBX'l nBnter J:NTBCD:Rn,i,.X07,20
J:IIPO'l'TEX'l' nanter MOJIBY•,m,ltX08,9
J:IIPOT'l'BX'l! n ■ntar S'l'RJ:JIG•,s,1-X09,63
J:IIPC'l"l'BX'l! •Bnter '1'J:MB•,t,.X0A,5
PRINTLN b, H ",d, - ,i
PRINTLN m,• ",s,• ",t

See Also
INPUT Statement, INPUT... Statements, INPUTSTR Statement, LET Statement,
PROMPTSTR Statement

The PPL Development Kit 165

Chapter7 PPL Reference

INSTR() Function

166

Function
Find the position of one string within another string.

Syntax
INSTR(str,sub)

s tr A string expression to look for sub in.

sub A string expression to search for.

Return Type & Value

INTEGER Returns the I ~based position of sub within str or O if sub is not found
withinstr.

Remarks
This function is useful for determining if a particular word or phrase exists in a string. The
return value is the position of the sub string within the longer string. The first character of str
is position 1, the second is position 2, and so on. If sub is not found instr, 0 is returned.

Examples

STRING s
WHILE (l:HS'l'RIO'PPBR(a),nQUI'l'") "'0) DO

INPUTTEXT "Enter string", s, @XOE, 40
NEWLINE
PRINTLN s

ENDWHILE

See Also
LENO Function, SCRTEXTO Function, SPACEO Function, STRINGO Function

The PPL Development Kil

PPL Reference Chapter 7

INTEGER Type

Function
Declare one or more variables of type integer.

Syntax
INTEGER varlarr(s [, s[.s]] I [,varlarr(s[.s [, s]])]

var The name of a variable to declare. Must start with a letter [A-Z] which
may be followed by letters, digits [0-9] or the underscore LJ. May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions
as var are used.

s The size (0-based) of an array variable dimension. Any constant integer
expression is allowed.

Remarks
INTEGER variables are stored as four byte signed long integers. The range of an INTEGER
is -2,147,483,648 - +2,147,483,647. An INTEGER assignment to a STRING will result in a
string with the representation of the number (similar to BASIC's STRS function and C's ltoa
function). A STRING to INTEGER assignment will convert the string back to the four byte
binary integer value (similar to BASIC's VAL function and C's atol function). If an
INTEGER is assigned to or from any other type, an appropriate conversion is performed
automatically by PPL.

Examples
J:ftBGBll i, year, car4Deck(C*13), -trix(2,2), matric•■ (l,4,51

See Also
BOOLEAN Type, DATE Type, MONEY Type, STRING Type, TIME Type

The PPL Development Kil 167

Chapter7 PPL Reference

JOIN Statement

168

Function
Execute the join conference command with desired sub-commands.

Syntax
JOIN cmds

cmds A string expression with any desired sub-commands for the join conference
command.

Remarks
This statement will allow you to access the join conference command (the J command from the
main menu), and any join conference sub-commands, under PPE control. Note that this
statement will destroy any previously tokenized string expression. If you have string tokens
pending at the time of the JOIN statment you should save them first and then retokenize after
the JOIN statement is complete.

Examples

STRING yn
INPUT'iN wJoin SysOp conference" ,yn, @XOE
IF (yn = YESCHAR () J JOIN 4

See Also

BLT Statement, DIR Statement, QUEST Statement

The PPL Development Kit

PPL Reference Chapter7

KBDCHKOFF Statement

Function

Tum off keyboard timeout checking.

Syntax
KBDCHKOFF

No arguments are required

Remarks
PCBoard has built in automatic keyboard timeout detecting. What this means is that if
someone should remain online for a SysOp defined period of time without typing anything for
PCBoard to process, PCBoard will detect it, log it to the callers log, and recycle back to the
call waiting screen. Some applications require the ability to tum this off~ for example, a
process that will take a while without interacting with the caller should tum off keyboard
timeout testing to keep PCBoard from thinking that the user has stopped entering information.
Nonnally, PCBoard would just recycle at that point. So, just before you start a section of code
that should continue for a while without user input, you should issue a KBDCHKOFF
statement. It will tum off the automatic keyboard timeout checking. When you've :finished the
block where keyboard timeout checking has been disabled, issue the KBDCHKON statement
to tum it back on.

Examples

Dl>OIIKOPP
WHILE (RANDOMUOOOO) <> 01 PRINT
KBDCHKON

See Also

Something to take a long time!

CDCHKOFF Stalement, CDCHKON Stalement, KBDCHKON Stalement

The PPL Development Kit 169

Chapter7 PPL Reference

KBDCHKON Statement

170

Function
Tum on keyboard timeout checking.

Syntax
KBDCHKON

No arguments are required

Remarks
PCBoard has built in automatic keyboard timeout detecting. What this means is that if
someone should remain online for a SysOp defined period of time without typing anything for
PCBoard to process, PCBoard will detect it, log it to the callers log, and recycle back to the
call waiting screen. Some applications require the ability to tum this off~ for example, a
process that will take a while without interacting with the caller should tum off keyboard
timeout testing to keep PCBoard from thinking that the user has stopped entering information.
Normally, PCBoard would just recycle at that point. So,just before you start a section of code
that should continue for a while without user input, you should issue a KBDCHKOFF
statement. It will tum a.ff the automatic keyboard timeout checking. When you've finished the
block where keyboard timeout checking has been disabled, issue the KBDCHKON statement
to tum it back on.

Examples

KBDCHKOFF
WHILE (RANDOM(lOOOOJ <> 0) PRINT •. • ' Something to take a long time!
KBDCRKOII

See Also

CDCHKOFF Statement, CDCHKON Statement, KBDCHKOFF Statement

The PPL Development Kit

PPL Reference Chapter7

KBDFILE Statement

Function
Stuff the contents of a text file into the keyboard buffer for later processing.

Syntax
KBDFILE file

file A string expression with the file name whose contents should be stuffed
into the keyboard buffer.

Remarks
This statement allows you to feed a series of keystrokes to PCBoard as though they were typed
in by the user. This is useful when you need to feed a series of commands to PCBoard one
right after another and they would add up to more than 256 characters (the maximum buffer
size for the KBDSTUFF statement).

Examples
INTEGER retcode
SHOWOFF
OPENCAP "NEWFILES. LST-' retcode
KBDSTUFF CHR(13)
DIR -N; S;A;NS"
CLOSECAP
SHOWON
SHELL TRUE, retcode, "PKZIP", "-mex NEWFILES NEWFILES.LsT
D!)l'J:LB "l'LIUJl'J:U,CIID"

See Also
KBDSTUFF Stolement

Th, PPL Dev,topm,nt Kit 171

Chapter 7 PPL Reference

KBDSTUFF Statement

172

Function

Stuff a string into the keyboard buffer for later processing.

Syntax
KBDSTUFF str

str A string expression to stuff into the keyboard buffer for later processing.

Remarks
This statement allows you to feed a series of keystrokes to PCBoard as though they were typed
in by the user. This can be especially useful when you are replacing an existing command;
add your PPE file to the CMD.LST file so that it takes the place of the built in command, then
have your PPE stuff the original (or modified) command back to the keyboard buffer.
PCBoard will then process it as soon as you exit your PPE application. It can also be used
when building new commands that should perform several built in operations automatically.
A maximum of 256 characters at a time can be stuffed into the keyboard buffer. If you need
more than this, you should use the KBDFil,E statement. Note that this statement may not be
used to access commands defined in the CMD.LST file.

Examples

INTEGER retcode
SHOWOFF
OPENCAP "NEWFILES. LST~' retcode
KBDSTUFF CHR (13)
DIR "N;S;A;NS"
CLOSECAP
SHOWON
SHELL TRUE, retcode, "PKZIP", "-mex NEWFILES NEWFILES.LST"
ltBDSTUPI' "l'LAG NBWl'J:LKS.ZJ:P•

See Also

KBDFILE Statement

The PPL Development Kit

PPL Reference

KINKEY() Function

Function
Get the next key input from the local keyboard only.

Syntax
KINKEY()

No arguments are required

Return Type and Value

Chapter7

STRING Returns a single character for displayable characters or a string for cursor
movement and function keys.

Remarks
This function will return a single character long string for most key presses. Additionally. it
will return key names for function keys and cursor movement keys. It will only return
keystrokes from the local BBS node's keyboard. However. realize that many function keys arc
reserved by PCBoard for BBS related uses and may not be arnilable for your applications that
require SysOp input.

Examples

STRING key
WHILE Ikey<> CHR(27)J DO

LET key = KIDBY()
IF (LEFT(key, 5) = "SHIFT") THEN

PRINTLN "It. was a shift.ed key"
ELSEIF (LEFT(key,4) = "CTRL"J THEN

PRINTLN "It was a control key"
ELSEIF (LEFT(key,31 = "ALT") THEN

PRINTLN "It was an alternate key·•
ENDIF
PRINTLN "The key was • 'key

ENDWHILE

See Also
INKEYQ Function, MGETBYTEQ Function, MINKEYO Function

The PPL Development Kit 173

Chapter 7 PPL Reference

174

LANG Constant

Function

Set the language specific file search flag in a DISPFILE statement.

Value
4 = IOOb = 4o = 4h

Remarks
The DISPFILE statement will allow you to display a file to the user, and optionally to have
PCBoard look for alternate security, graphics, and/or language specific files. This flag
instructs PCBoard to search for alternate language files via the language extension. The
current language extension may be obtained with the LANGEXTO function.

Examples

STRING s
DISPFILE "MNUA", SEC+GRAPH+I.AIIG
INPUT "Option", s

See Also
DISPFILE Statement, GRAPH Constant, LANGEXTQ Function, SEC Constant

The PPL Development Kit

PPL Reference

LANGEXT() Function

Function

Get the file extension for the current language.

Syntax
LANGEXT()

No arguments are required

Return Type and Value

Chapter7

STRING Returns a "JOO(" fonnatted string where XXX is the extension text (could
be I, 2 or 3 characters long depending on the configuration and language
in use).

Remarks
This function allows you to access the file extension used by SysOp definable and system
language specific files. You may use it to create your own filenames that are language
specific.

Examples

PRINTLN "Brief user profile"
NEWLINE
PRINTLN" Security: ",CURSECII
PRINTLN "Graphics Mode: ", GRJ\.FMODE ()
PRINTLN " Language: " , LUIGBX'1' ()

See Also
LANG Constant

The PPL Development Kit 17.<

Chapter7 PPL Reference

LEFT() Function

176

Function

Access the left most characters from a string.

Syntax
LEFT(str,chars)

str

chars

A string expression to take the left most characters of.

An integer expression with the number of characters to take from the left
endofstr.

Return Type & Value

STRING Returns a string with the left most chars characters of str.

Remarks
This function will return a sub string with the left most chars characters of a specified. string.
This can be useful in data processing as well as text formatting. If chars is less than or equal
to O then the returned string will be empty. If chars is greater than the length of str then the
returned string will have spaces added to the left to pad it out to the full length specified.

Examples

WHILE (RANDOM(250) <> OJ PRINT Lllll''l'(RAJIDOll(250),41."

STRING s
FOPEN l, "DATA.TXT" ,O_RD, S_DN
WHILE { !FERR(l) I DO

FGET l,s
PRINT RTRIH (LBP'l'(■ ,25)," "),"
PRINTLN RIGHT(s,LEN(s)-25)

ENDWHILE
FCLOSE 1

See Also
MIDO Function, RIGHTO Function

The PPL Development Kil

PPL Reference

LEN() Function

Function
Access the length of a string.

Syntax
LEN(str)

s tr Any string expression.

Return Type & Value

INTEGER Returns the length of a string.

Remarks

Chapter7

This function will return the length of a string. The value returned will always be bct,vecn O
(an empty string) and 256 (the maximum length of a string).

Examples

STRING s
FOPEN l, "OATA.TXT",O_RD,S_DN
WHILE (!FERR(l)) DO

FGET 1.s
PRINTLN "The length of the current string is ", LBN(s)

ENDWHILE
FCLOSE 1

See Also
INSTRQ Function, SCRTEXTO Function, SPACEO Function, STRING() Function

The PPL Development Kit 17':'

Chapter7 PPL Reference

LET Statement

178

Function
Evaluate an expression and assign the result to a variable.

Syntax
LET var = expr
-or-
var = expr

var Variable to which the result of .. pr should be assigned.

expr Any valid PPL expression.

Remarks
The LET statement supports modes of operation: explicit and implicit. An explicit LET
statement always includes all of the parts in the first example above (the LET keyword, the
variable, the equal sign, and the expression). An implicit LET statement does not need the
LET keyword; the format (var = expr) is sufficient. However, the implicit form will not
always work. For example, if you had a variable named PRINT (which is also a statement
name) you could not use PRINT= expr; PPL expects the first word on a line to be a statement
name, and if it isn't, it is an implicit LET statement. Since PPL would find the PRINT
keyword first it would try to process the rest of the line as a PRINT statement. This is easily
avoided by using the LET keyword and making it an explicit LET statement (LET PRINT =
expr).

Examples

INTEGER i
STRING s
GETUSER
LB'l' tJ "'1> • •IIBWPWI)•
LB'l' • - • •'l'hia i• a ■tring•
LB'l' i • 7*9+9*'1
PUTUSER

See Also
INPUT Statement, INPUT ... Statements, INPUTSTR Staten,ent, INPUTTEXT Statement,
PROMPTSTR Statement

T1ie PPL Development Kil

PPL Reference Chapter 7

LFAFTER Constant

Function
Set the extra line feed after prompt flag in a DISPTEXT, INPUTSTR, or PROMPTSTR
statement.

Value
256 - 100000000b - 4000 - I 00h

Remarks
The INPUTSTR, PROMPTSTR, and DISPTEXT slatements have the ability to send an
extra carriage return/line feed after a prompt is displayed automatically and without the need
to make a separate call to the NEWLINE statement.

Examples

STRING pwd
INPUTSTR "Enter id" ,pwd, @XOE, 4, "0123456789 '. LFBEFORE+NEWLINE+LJ"Al'TBR
IF (pwd <> "1234") PRINTLN "Bad id number"

See Also
DISPTEXT Statement, INPUTSTR Statement, LFBEFORE Constant, NEWLINE
Constant, PROMPTSTR Statement

The PPL Development Kil 179

Chapter7 PPL Reference

LFBEFORE Constant

180

Function
Set the line feed before prompt flag in a DISPTEXT, INPUTSTR, or PROMPTSTR
statement.

Value
128 = 10000000b = 2000 = 80h

Remarks

The INPUTSTR, PROMPTSTR, and DISPTEXT statements have the ability to send a
carriage return/line feed before a prompt is displayed automatically and without the need to
make a separate call to the NEWLINE statement.

Examples

STRING pwd
INPUTSTR "Enter id" ,pwd,@XOE, 4, "0123456789• ,LFBBFORB+NEWLINE+LFAFTER
IF (pwd <> "1234"1 PRINTLN "Bad id"

See Also
DISPTEXT Statement, INPUTSTR Statement, LFAFTER Constant, NEWLINE Constant,
PROMPTSTR Statement

The PPL Dew!lopment Kil

PPL Reference Chapter7

LOG Statement

Function
Log a message to the callers log.

Syntax
LOG msg, left

msg A string expression to write to the callers log.

left A boolean expression with value TRUE if msg should be left justified.
FALSE if msg should be indented six spaces.

Remarks

There are two primary uses for this statement. First and foremost, it allows you to keep the
SysOp informed of what the user does while using your PPL application. Secondly. it can
allow you to track information within your PPE while debugging.

Examples
BOOLEAN flag
PRINT "Type QUIT to exit.
WAITFOR "QUIT", flag, 60
IF {!flag) LOG "Uaer did not type QUJ:'1'",FALSB
LOG ••••BXI'l'IIIG PPB***",'l'RtlB

See Also
DBGLEVEL Statement, DBGLEVELO Function

The PPL Development Kit 181

Chapter7 PPL Reference

LOGGEDON() Function

182

Function
Determine if a user has completely logged on to the BBS.

Syntax
LOGGEDON()

No arguments are required

Return Type and Value

BOOLEAN Returns TRUE if the user has completed logging in, FALSE othenvise.

Remarks
There are some features of PPL that are not available until the user has completely logged in,
such as the user variables and functions and the CALLNUMO function. This function will
allow you to detect whether or not a user has completely logged in and if selected PPL features
are available.

Examples

IF (!LOGGBDOH()) LOG "USER NOT LOGGED ON",0

See Also
CALLNUMO Function, ONLOCALO Function, U_LOGONSO Function

The PPL Development Kit

PPL Reference Chapter7

LOGIT Constant

Function
Set the write prompt to callers log flag in a DISPTEXT statement.

Value
32768 = I 000000000000000b = 1000000 = 8000h

Remarks
The DISPTEXT statement has the ability to write a specified prompt to the callers log
automatically without the need to use the LOG statement. This flag will indent the prompt six
spaces in the callers log.

Examples

DISPTEXT 4, LFBEFORE+LFAFTER+BELL+LOQl'l'

See Also
DISPTEXT Stotement, WGITLEFr Constant

The PPL Developm1tnt Kil 183

Chapter7 PPL Reference

LOGITLEFT Constant

184

Function
Set the write prompt to callers log left justified Dag in a DISPTEXT statement.

Value
65536 = 10000000000000000b = 2000000 = IO0OOh

Remarks

The DISPTEXT statement has the ability to write a specified prompt to the callers log
automatically without the need to use the LOG statement. This flag will not indent the
prompt in the callers log.

Examples

DISPTEXT 4, LFBEFORE+LFAFTER+BELL+LOQ:I'rLBl"l'

See Also
DISPTEXT Stat,m,nt, LOGIT Constant

Th, PPL Dev,lopment Kit

PPL Reference

LOWER() Function

Function
Converts uppercase characters in a string to lowercase.

Syntax
LOWER(sexp)

sexp Any string expression.

Return Type & Value

Chapter7

STRING Returns se:c:p with all uppercase characters converted to lowercase.

Remarks
Although "STRING" is technically different from "string" (ie, the computer doesn't recognize
them as being the same because one is uppercase and the other is lowercase). it is often
necessary to save, display or compare infonnation in a case insensitive format. This function
will return a string with all uppercase characters converted to lowercase. So, using the above
example, WWER("STRING") would return "string".

Examples
STRING s
WHILE (UPPER(s) <> "QUIT") DO

INPUT "Text", s
PRINTLN LOWBll(a)

ENDWHILE

See Also
UPPERO Function

The PPL Dndopment Kil 185

Chapter7 PPL Reference

L TRIM() Function

186

Function
Trim a specified character from the left end of a string.

Syntax
LTRIM (str, ch)

s tr Any string expression.

ch A string with the character to strip from the left end of str.

Return Type & Value

STRING Returns the trimmed str.

Remarks
A common need in programming is to strip leading and/or trailing spaces (or other
characters). This function will strip a specified character from the left end of a string and
return the trimmed strinl.

Examples

STRING s
LET s = " TEST
PRINTLN L'l'llIN(••• •) ' Will print "TEST
PRINTLN L'l'llIN(•.,., ,m,•+•TA,,,, ,",". ") Will print "DATA.
PRINTLN LDIN(• ••••• DA"+"'l'A •• , •• "," ") ' Will print " DATA

See Also
RTRIMO Function, TRIMO Function

Th• PPL Dndop_,,, Kit

PPL Reference Chapter7

MASK_ ... () Functions

Function
Return a string for use as a valid character mask.

Syntax
MASK_ ... ()

No arguments are required
MASK_ should be followed by one of the following mask types: ALNUM. ALPHA. ASCH.
FILE, NUM, PATH, or PWD.

Return Type and Value

STRING Returns a string with a set of characters to use as valid input for an
INPUTSTR or PROMPTSTR slatemenl.

Remarks
There are many situations in which you will need to use an INPUTSTR or PROMPTSTR
statement to access the input field length of flags. However. all you need to use a 'stand1rd' set
of input characters. These functions provide you with some of the most common rnlid
character masks. They are: MASK_ALNUMO which returns A-Z. a-z. and 0-9:
MASK_ALPIIAO which returns A-Zand a-z; MASK_ASCIIO which returns all characters
from space (ASCII 32) to tilde (ASCII 126); MASK_FILEO which returns all legal file name
characters; MASK_NUMO which returns 0-9; MASK_pATHO which returns all legal path
name characters; and, finally, MASK_PWDO which returns a set of\'alid characters for use
in passwords.

Examples

INTEGER i
STRING s
INPUTSTR "Enter a number from Oto 1000".i.@XOE,4,IUUIK_NUM(),OEFS
PROMPTSTR 14B,s,12,DSK_PWD() ,ECHOOOTS
INPUTSTR "Enter your comment", s, @XOE, 60,MUK_ASc:n(l ,DEFS

See Also

INPUTSTR Stalement, PROMPTSTR Stalement

The PPL Development Kit 187

Chapter 7 PPL Reference

MAXNODE() Function

188

Function
Determine how many nodes a system may have.

Syntax
MAXNODE(I

No arguments are required

Return Type and Value

INTEGER Returns the node limit available to the system running the PPE file.

Remarks
Every package of PCBoard purchased comes with a license agreement that limits it to a
maximum number of nodes. This node limit restricts various features of PCBoard, such as the
WHO display and CHAT functions. This limit is available to your PPL applications via this
function.

Examples

INTEGER i
FOR i = 1 TO MAXHODB()

RDUNET i
IF ((UN_STAT() = "A") I (UN_STAT(l = •u~)J THEN

BROADCAST i,i, •Hello, how are you?"
IF (PCBNODE() = i) PRINLN ~Quit talking to yourself•

E.'ll'OIF
NEXT

See Also
PCBNODEO Function

The PPL Developmenr Ki,

PPL Reference Chapter7

MESSAGE Statement

Function

Enter a message under PPL control.

Syntax
MESSAGE conf, to, from, sub, sec,pack, rr, echo, file

conf An integer expression with the conference in which to post the message.

to A string expression with the user name to which the message should be
sent.

f ram A string expression with the user name that the message should be sent
from.

sub A string expression with the subject of the message.

sec A string expression with the desired security for the message ("N"for none
or "R" for receiver only).

pack A date expression with the packout date for the message (or O for no
packout date).

rr A boolean expression with the return receipt requested flag (TRUE to
request a return receipt, FALSE otherwise).

echo A boolean expression with the echo flag (TRUE to echo the message.
FALSE otherwise).

file A string expression with the path and file name of the text file to use as the
message text.

Remarks
This statement will allow you to leave a message from any user (or any 'name' you wish to use)
to any user on your system. This can be useful if you want to notify a user of information that
they should download in a QWK packet or that they might miss too easily as a quick one liner
on screen from the PPL.

Examples

IF (CURSECII < 20) THEN
IIBSSAGS o. 'D'_IIIAD(). •SYsop•. ·REGJ:SHR· •••• ,DA'l'B() ,'l'R'D'B, FALSE, "RBG.'l'XT·

ENDIF

See Also
CURCONF0 Function, U_NAME0 Function

The PPL Development Kit /89

Chapter7 PPL Reference

MGETBYTE() Function

190

Function
Get the next byte input from the modem.

Syntax
MGETBYTE()

No arguments are required

Return Type and Value

INTEGER Returns the value (0-255) of the next byte from the modem input buffer or
-1 if no bytes are pending.

Remarks
Any character may be received from the users modem. Normally PCBoard will filter and
convert strings (ESC sequences and DOORWAY codes) automatically. However, sometimes
this isn't desired and you need to access the incoming bytes directly. This function will look
directly for incoming characters from the modem and return them as a value from O to 255.
These numbers may be convened to characters with the CBRO function if necessary.

Examples

INTEGER byte
WHILE (byte <> 27) DO

LET byte " MGB'l'BY'l'B()
PRINTLN "The byte value is •, byte

ENDWHILE

See Also
INKEYO Function, KINKEYO Function, MINKEYQ Function

Th, PPL Development Kit

PPL Reference Chapter7

MID() Function

Function

Access any sub string of a string.

Syntax
MID (str ,pos,chars)

str A string expression to take the left most characters of.

pas An integer expression with the position within str to stan taking the sub
string from.

chars An integer expression with the number of characters to take from str.

Return Type & Value

STRING Returns a string with the specified number of characters from the specified
position of str.

Remarks
This function will return a sub string with the specified number of characters and from the
specified position of str. This can be useful in data processing as well as text formatting. The
pos parameter may be less than I (the beginning of str) and greater than the length of str; if it
is spaces will be added to the beginning and/or ending as needed. If chars is less than or
equal to O then the returned string will be empty. If chars is greater than the available length
of str then the returned string wil1 have spaces added to the end(s) to pad it out to the full
length specified.

Examples

WHILE (RANDOM(250) <> 0) PRINT IIJ:D(RUDOKl250),0,,),"

STRING s
FOPEN l,~DATA.TXT",O_RD,S_DN
WHILE (!FERR(l)) DO

FGET 1,s
PRINT LEFT(s,S),RTRIM(MI.D(a,s.201.- "),"
PRINTLN RTRIM(NJ:D(a,LBll(■)-25,60), - "J

ENDWHILE
FCLOSE 1

See Also
LEFTO Function, RIGHTO Function

The PPL Development Kil 191

Chapter7 PPL Reference

MIN() Function

192

Function
Extract the minute of the hour from a specified time of day.

Syntax
MIN(texp)

texp Any time expression.

Return Type & Value

INTEGER Returns the minute of the hour from the specified time expression (texp).
Valid return values are from Oto 59.

Remarks
This function allows you to extract a particular piece of ir.fonnation about a TIME value, in
this case the minute of the hour of the time of day expression.

Examples

PRINTLN "The minute is ",Hill'{TIIIB())

See Also
HOUR() Function, SEC0 Function, TIME0 Function

The PPL Development Ku

PPL Reference

MINKEV() Function

Function
Get the next key input from the modem only.

Syntax
MINKEY()

No arguments are required

Return Type and Value

Chapter7

STRING Returns a single character for displayable characters or a string for cursor
movement and function keys.

Remarks
This function will return a single character long string for most key presses. Additionally. it
will return key names for function keys and cursor movement keys if it encounters ESC
sequences or DOORWAY codes. It will only return keystrokes from the remote users modem.

Examples

STRING key
WHILE (key <> CHR(271 J DO

LET key = IIIIIDY()
IF ILEFT(key,5) = "SHIFT") THEN

PRINTLN "It was a shifted key•
ELSEIF (LEFT(key,4) = "CTRL"l THEN

PRINTLN "It was a control key"
ELSEIF (LEFT(key,3) = "ALT") THEN

PRINTLN "It was an alternate key"
ENDIF
PRINTLN "The key was ", key

ENDWHILE

See Also
INKEYO Function, KINKEYO Function, MGETBYTEO Function

The PPL Development Kil 193

Chapter7 PPL Reference

MINLEFT() Function

194

Function

Return the users minutes left.

Syntax
MINLEFT{)

No arguments are required

Return Type and Value

INTEGER Returns the number of minutes the user online has left to use.

Remarks
This function win allow you to access how much time the user has remaining. You could use
it to disable certain features at a certain point in their session. Note that this number can be
either the minutes left today or this session if the SysOp does not enforce daily time limits.

Examples

IF {lllNLBF'l'() > 10) THEN
KBDSTUFF •o•+CHR(l3)

ELSE
PRINTLN "Sorry, not enough time left to download"

ENDIF

See Also
ADJTIME0 Function, MINON0 Function, U_TIMEON0 Function

The PPL Development Ki

PPL Reference

MINON() Function

Function
Return the users minutes online.

Syntax
MINON()

No arguments are required

Return Type and Value

Chapter7

INTEGER Returns the number of minutes the user online has used this session.

Remarks
This function \\ill allow you to access how much time the user has used this session. You
could use it to allow or disallow certain featmes before a cenain point in their session. Note
that this number will always be the minutes used this session regardless of whether or not the
SysOp enforces daily time limits.

Examples

IF (Nl1101fl) :>:: 10) THEN
KBDSTUFF "D•+CHR(l))

ELSE
PRINTLN •sorry, you haven't been on long enough yet to download·

ENDIF

See Also
ADJTIME0 Function, MINLEFT0 Function, U_TIMEON0 Function

The PPL Development Kit 195

Chapter7 PPL Reference

MODEM() Function

198

Function
Access the connect string as reported by the modem.

Syntax
MODEM()

No arguments are required

Return Type & Value

STRING Returns the modem connect string.

Remarks
PCBoard expects and requires certain information to be reported by the modem anytime a user
connects to the BBS. The minimum requirement is a string with the word CONNECT; other
information may be included, such as the connect speed, error conection, data compression,
etc. Should your PPL application have need of this information as well, it may be accessed
with this function.

Examples

FAPPEND 1, "MODEM.LOG~ ,O_WR, S_DW
FPUTLN l, LEFT(U_NAME(), 30) +HODEii()
FCLOSE 1

See Also
CALLIDO Function, CARRIER() Function

The PPL Development Kit

PPL Reference Chapter 7

MONEY Type

Function
Declare one or more variables of type money.

Syntax
MONEY varlarr(s [, s[, s] J l [,varlarr(s[.s [, s] J) J

var The name of a variable to declare. Must start with a letter [A-Z] which
may be followed by letters, digits (0-9] or the underscore LJ. May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions
as var are used.

s The size (0-based) of an array variable dimension. Any constant integer
expression is allowed.

Remarks
MONEY variables are stored as positive or negative cents. The range of MONEY is
$-21,474,836.48 through $+21,474,836.47. It is stored internally as a four byte signed long
integer. If MONEY is assigned to or from an INTEGER type then the cents (-2.147.483.648
• +2,147,483,647) are assigned. If MONEY is assigned to a STRING type then it is
automatically convened to the following format: "$s0.CC", wheres is the sign (- for negati\"e
amounts, nothing for positive amounts), D is the dollar amount (one or more digits as needed)
and CC is the cents amount (00-99). If a STRING is assigned to MONEY then PPL "ill do
it's best to convert the string back to the appropriate amount of money. All other types. when
assigned to or from MONEY, will be converted to an INTEGER first before being assigned
to or from the MONEY type.

Examples
ll0Jl8Y it...,.t, aub'l'ot, total, pric•Li ■t(2,l.7)

See Also
BOOLEAN Type, DATE Type, INTEGER Type, STRING T>pe, TIME Type

TIie PPL O..e/opmenl Kit 199

Chapter7 PPL Reference

MONTH() Function

200

Function

Extracts the month of the year from a specified date.

Syntax
MONTH (dexp)

dexp Any date expression.

Return Type & Value

INTEGER Returns the month from the specified date expression (dexp). Valid return
values are from I to 12.

Remarks
This function allows you to extract a particular piece of information about a DATE value, in
this case the month of the date.

Examples

PRINTLN ~This month is: ",IIOIITB'(DA'l'JI())

See Also
DATE0 Function, DAY0 Function, DOW0 Function, YEAR0 Function

The PPL Development Kil

PPL Relarenca Chapter7

MORE Statement

Function

Pause the display and ask the user how to continue.

Syntax
MORE

No arguments are required

Remarks
It is often necessary to pause in the display of information and wait for the user to catch up.
This statement allows you prompt the user on how to continue. The acceptable responses are
Y (or whatever letter is appropriate for the users language selection) to continue, N (or, again,
whatever letter is appropriate) to abort, or NS to continue in non-stop mode. It displays
prompt number 196 ftom the PCBTEXT file for the CUITOnt language to let the user know
what is expected.

Examples

PRINTLN "Your account has expired!•
PRINTLN "You are about to be logged off"
MOU
PRINTLN "Call me voice to renew your subscription•

See Also
ABORTO Function, DISPTEXT Stalement, INKEYO Function, PROMPTSTR Stalement,
WAIT Stalement

The PPL »-lopment Kit

Chapter7 PPL Reference

MPRINT/MPRINTLN Statements

202

Function

Print (write) a line to the calle(s screen (modem) only (with an optional newline appended).

Syntax
MPRINT exp [, exp I
-or-
MPRINTLN [exp [, exp))

exp An expression of any type to evaluate and write to the caller's screen.

Remarks
These statements will evalutate zero, one or more expressions of any type and write the results
to the modem for the caller's display. The MPRINTLN statement will append a newline to
the end of the expressions~ MPRINT will not. Note that at least one expression must be
specified for MPRINT. unlike the MPRINTLN statement which need not have any
arguments passed to it. These statements only send infonnation to the modem and do not
interpret @ codes; if the remote caller has ANSI then ANSI will be interpreted.

Examples

MPR'I'NT n'l'be name of the current1y ruDD.ing PPB file i• 11

MPRZN'l'Llf PPBRAIIK I) • • • ■
MPRl:11'1' •'l'he path where it ia located ia 11

MPR:Ilfl'Llf PPBPA'l'B I) , ■ • ■
manrr "'l'be date ia ", DA'l'B I) , ■ and the tilne ia ■, '1':J:1111 (J , " • •
MPlll:ftLN

See Also
PRINT/PRINTLN Statements, SPRINT/SPRINTLN Statements

The PPL Dev,/oament Kil

PPL Reference Chapter7

NC Constant

Function

To re-start the display of information according to the current mode.

Value
0 =Ob= Oo = Oh

Remarks
The STARTDISP statement takes a single argument to start displaying information in a
cenain format. FCL tells PCBoard to count lines and pause as needed during the display of
information. FNS tells PCBoard to not stop during the display of information. NC instructs
PCBoard to stan over with the last specified mode (FCL or FNS).

Examples

INTEGER i, j
STARTDISP PCL
F0Ri=lT0S

STARTDISP IIC
FOR j ::: 1 to 50

PRINTLN ~This is line ". j
NEXT

NEXT

See Also
FCL Constant, FNS Constant

The PPL Development Kit 103

Chapter 7 PPL Reference

204

NEWLINE Constant

Function
Set the new line after prompt flag in an INPUTSTR, PROMPTSTR, or DISPTEXT
statement.

Value
64 = IOOOOOOb = IOOo = 40h

Remarks
The INPUTSTR, PROMPTSTR, and DISPTEXT statements have the ability to send a
carriage return/line feed after a prompt is displayed automatically and without the need to
make a separate call to the NEWLINE statement.

Examples

STRING pwd
INPUTSTR "Enter id" ,pwd.@X0E, 4, "0123456789" ,LFBEFORE+DWLJ:D+LFAFTER
IF (pwd <> "1234'") PRINTLN "Bad id"

See Also
DISPTEXT Statement, INPUTSTR Statement, LFAFTER Constant, LFBEFORE
Constant, PROMPTS TR Statement

The PPL Development KU

PPL Reference

NEWLINE Statement

Function
Move the cursor to the beginning of the next line.

Syntax
NEWLINE

No arguments are required

Remarks

Chapter 7

This slatement should be used for moving to the beginning of the next line on screen. scrolling
if necessary. It will do so regardless of the current cursor position. unhke the FRESHLINE
statement.

Examples

INTEGER i' end
LET end = RANDOM(201
F0Ri=lT0end

PRINT RIGHT(RANDOM(l □ 000), Bl
NEXT
FRESHLINE
NEWLINE
PRINTLN "Now we continue with a blank line between"

See Also
FRESHLINE Statement, NEWLINES Statement

The PPL /Jevelopment Kit

Chapter 7 PPL Reference

NEWLINES Statement

206

Function
Execute a specified number of NEWLINE statements.

Syntax
NEWLINES count

count An integer expression with the number of times to execute NEWLINE.

Remarks
This statement is convienient when executing multiple and/or variable NEWLINE statements
for screen formatting. It takes a single integer expression argument and automatically
executes that many NE\\'LINE statements for you without the need to set up a loop or to write
multiple NEWLINE lines in your source code.

Examples

INTEGER L end
LET end = RANDOM (2 0)
F0Ri=lT0end

PRINT RIGHT(RAND0M(10000) ,8)
NEXT
FRESHLINE
NEWLINE 5
PRINTLN "Now we continue with a 5 blank lines between~

See Also

FRESHLINE Statement, NEWLINE StaJement

The PPL Development KiJ

PPL Reference Chapter 7

NEWPWD Statement

Function

Change the users password and maintain the password PSA if installed.

Syntax
NEWPWD pwd, var

pwd A string expression with the new password for the user.

var A variable to hold the password change status: TRUE if the password was
changed or FALSE otherwise.

Remarks
There are two ways to change the users password under PPL control. The first is to simply use
the GETUSER statement, assign the new password to the U_PWD variable. then issue the
PUTUSER statement. However, this isn't adequate if the SysOp has installed the password
PSA. This statement will take care of validating the password, checking it against the
password history, updating the password history. setting a ne,,v expiration date if necessary and
incrementing the times changed counter. If the password fails a validity test then this
statement will set the var parameter to FALSE to Jet you know that the password wasn't
changed. If the password PSA isn't installed or if the password confonns to the PSA
requirements, then ,·ar will be set to TRUE.

Examples

BOOLEAN changed
STRING pwd
INPUTSTR -Enter a new password" .pwd,@XOE.12,MASK_PWD(), ECHODOTS
NEWLINE
DKPWD pwd., changed
IF (!changed) PRINTLN "Password not changed"

See Also
MASK_PWDO Function, U_PWD Variable, U_PWDEXP Variable, U_PWDHISTO
Function, U_PWDLCQ Function, U_PWDTCO Function

The PPL Development Kit

Chapter7 PPL Reference

NOCHAR() Function

208

Function
Get the no response character for the current language.

Syntax
NOCHAR(I

No arguments are required

Return Type & Value

STRING Returns the no character for the CUITent language.

Remarks
Support for foreign language yes/no responses can be easily added by using this function to
determine what a negative response should be instead of hardcoding the english "N" character.

Examples

STRING ans
LET ans = YESCHAR ()
INPUTSTR "Run program now" ,ans,@X0E, 1, "" ,AUTO+YESNO
IF (ans : NOCIIAll(I) END

See Also

YESCHARQ Function, YESNO Constant

The PPL Development Kil

PPL Reference Chapter 7

NOCLEAR Constant

Function
Set the no clear input field flag in an INPUTSTR or PROMPTSTR statement.

Value

1024 = 10000000000b = 20000 = 400h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to automatically clear the
default value from the input field when the users presses his first key if ANSI is aYailable.
This is the default mode of operations. If you don't want this to happen, you may use this flag
to disable this feature.

Examples

STRING cmds
LET cmds = "QUIT"
INPUTSTR "Commands'. cmds,@X0E, 60, MASK_ASCII (), STACKED+NOCLBAR
TOKENIZE cmds
LET cmds = GETTOKEN ()
IF (cmds = "QUIT") END
KBDSTUFF cmds+TOKENSTR ()

See Also
INPUTSTR StaJement, PROMPTSTR Statement

The PP/. Development Kit

Chapter7 PPL Reference

NOT() Function

210

Function
Calculate the bitwise NOT of an integer argument.

Syntax
NOT(iexp)

iexp Any integer expression.

Return Type & Value

INTEGER

Remarks

Returns the bitwise NOT of iexp.

This function may be used to toggle all bits in an integer expression. Wherever a bit had been
set it will be clear after this function call, and vice versa.

Examples
Toggle the bi ts

PRINTLN N0'1'(12Hb)
Toggle all flag

INTEGER flag
LET flag : NO'l'(flag)

See Also
ANDO Function, ORO Function, XORQ Function

The PPL De>elopment Kit

PPL Reference

ONLOCAL() Function

Function
Determine whether or not a caller is on locally.

Syntax
ONLOCAL()

No arguments are required

Return Type & Value

BOOLEAN Returns TRUE if the caller is on locally. FALSE otherwise.

Remarks

Chapter 7

There are some features that work differently for local and remote callers, such as file transfers
and modem communications. This function will report to you whether or not a user is logged
on locally and allow you to handle local processing differently than remote processing.

Examples

IF (OIILOCAL(I) THEN
PRINTLN •call back verification cannot be performed for"
PRINTLN •users logged in locally! "
END

ENDIF
CALL "CALLBACK. PPE•

See Also
CALLNUMO Function, LOGGEDONO Function, U_LOGONSO Function

The PPL Development Kit

Chapter7 PPL Reference

OPENCAP Statement

212

Function
Open the screen capture file.

Syntax
OPENCAP file, stat

file A string expression with the file name to open.

stat A variable to hold the return status (TRUE if error opening file, FALSE
othenvise).

Remarks
PCBoard has the ability to capture screen output to a file for later reference. PPL allows that
same ability via the OPENCAP and CWSECAP statements. This could be useful in a
program that executes a series of commands in non•stop mode. The process could open a
capture file first, execute the commands, close the capture file, then allow the user to view or
download the capture file. CLOSECAP closes the capture file and turns off screen capturing.
Also, the SHOWON and SHOWOFF statements can be used to tum on and off showing
information to the screen while allowing that same information (even if not displayed or
transmitted via modem) to be captured to a file. The SHOWSTATO function can be used to
check the current status of the SHOWON and SHOWOFF statements.

Examples

BOOLEAN ss
LET ss = SHOWSTAT (l
SHOWOFF
OPENCAI' •CAP•+SftJ:IJG(l'CBRODB()) ,ocl'lag
IF (ocFlagJ THEN

DIR ~u;NS"
CLOSECAP
KBDSTUFF "FLAG CAP~+STRING (PCBNODE() J +CHR (13)

ENDIF
IF (ssl THEN

SHOWON
ELSE

SHOWOFF
ENDIF

See Also

CLOSECAP Statement, SHOWOFF Statement, SHOWON Statement, SHOWSTAT0
Function

1'he PPL Development KU

PPL Reference Chapter7

OPTEXT Statement

Function

Set the text to be used by the @OPTEXT@ macro.

Syntax
OPTEXT str

str Any string expression.

Remarks
The @OPTEXT@ macro is used to include operation specific text in prompts and display
files. Normally PCBoard automatically fills it in with the appropriate value. HoweYer. you
can use it for your own purposes by issuing this statement to set the text and immediately
displaying the information that should use it (by either printing a line or displaying a file).

Examples

Ol'TBX'l' S'l'RJ:NG(DA'l'B())+• I n+s'l'RJ:NG('l'IMBI))
PRINTLN "The date and time are @OPTEXT@"
DISPFILE -FILE" ,GRAPH+SEC+LANG

See Also
DISPFILE Statement, DISPSTR Statement, DISPTEXT Statement, PRINT/PRINTLN
Statements

The PP/. Development Kit 113

Chapter7 PPL Reference

OR() Function

214

Function
Calculate the bitwise OR of two integer arguments.

Syntax
OR(iexpl, iexp2)

iexpl

iexp2

Any integer expression.

Any integer expression.

Return Type & Value

INTEGER

Remarks

Returns the bitwise OR of iexpl and iexp2.

This function may be used to set selected bits in an integer expression by ORing the expression
with a mask that has the bits to set set to I and the bits to ignore set to 0.

Examples

· Set the bi ts in the low byte
PRINTLN OR(12'8h, OOFFh)
' Randomly set a flag the hard way
INTEGER flag
LET flag " Oll(:RARDOll(l) ,RAHDOK(l))

See Also
ANDO Function, NOTO Function, XORO Function

Th• PPL Development Kit

PPL Reference

O_RD Constant

Function
Set the open for read access flag in a FCREATE/FOPEN/FAPPEND statement.

Value
O=Ob=Oo=Oh

Remarks

Chapter7

Files may be opened for read, write or combined read/write access. You should only use the
access you need to allow other processes to open files at the same time in multitasking and
networked environments. This constant will allow your PPE to read from a file \\ithout
writing any information out to it.

Examples

FOPEN 1, •FILE.DAT• ,O_IU), S_DN Open for read access
FOR i " 1 TO 10

FGET Ls
PRINTLN s

NEXT
FCLOSE l

See Also
O_RW Constant, 0_ WR Constant

Th, PPL ».v,lop,,..nt Kit 215

Chapter7 PPL Reference

O_RW Constant

216

Function
Set the open for read and write access flag in a FCREATEIFOPEN/FAPPEND statement.

Value
2= !0b=2o=2h

Remarks
Files may be opened for read, write or combined read/write access. You should only use the
access you need to allow other processes to open files at the same time in multitasking and
networked environments. This constant will allow your PPE to both read from and write to a
file without the need to close and reopen it between accesses.

Examples
FOPEN l,"FILE.DAT",O_RW,S_DN' Open for read and write access
FOR i : 1 TO 10

FPUT 1, "X"
FGET l,s
PRINTLN s

NEXT
FCLOSE 1

See Also
O_RD Constant, O_ WR Constant

The PPL Development Kit

PPL Reference Chapter7

O_WR Constant

Function
Set the open for write access flag in a FCREATE/FOPEN/FAPPEND statement.

Value
1 = lb= lo= lb

Remarks
Files may be opened for read, write or combined read/write access. You should only use the
access you need to allow other processes to open files at the same time in multitasking and
networked environments. This constant will allow your PPE to write to a file but ,\ill restrict
read access.

Examples

~~:~ !• ?~EirT" ,O_NR,S_DN ' Open for write access

FPUTLN 1, ~Line ~, i
NEXT
FCLOSE 1

See Also
O_RD Constant, O_RW Constant

The PPL Denlopment Kit

Chapter7 PPL Reference

PAGEOFF Statement

218

Function
Tum off the SysOp paged indicator.

Syntax
PAGEOFF

No arguments are required

Remarks
One of the features of PCBoard where change is often requested is the operator page facility.
Some people want to be able to configure multiple ranges of availability per day, some want a
different sounding page bell, longer or shorter page attempts, etc, etc. This statement, along
with the CHAT and PAGEON statements and the PAGESTAT0 function, allow you to
implement an operator page in any way desired.

Examples

PAGEON
FOR i = 1 TO 10

PRINT "@BEEP@•
DELAY 18
IF {KINKEY I) = • ") THEN

PAGBOJ'J'
SHELL TRUE, i, "SUPERCHT•, •"
GOTO exit

ENDIF
NEXT
:exit

See Also
CHAT Statement, PAGEON Statement, PAGESTATO Function

The PPL »-lopmenl Kil

PPL Reference

PAGEON Statement

Function

Tum on the SysOp paged indicator and update user statistics.

Syntax
PAGEON

No arguments are required

Remarks

Chapter 7

One of the features of PCBoard where change is often requested is the operator page facility.
Some people want to be able to configure multiple ranges of arnilability per day. some want a
different sounding page bell, longer or shorter page attempts. etc. etc. This statement. along
with the CHAT and PAGEOFF statements and the PAGESTAT0 function. allow you to
implement an operator page in any way desired. Note that this statement will also update the
current callers statistics PSA if it is installed.

Examples

"'"'""' FOR i = 1 TO 10
PRINT •@BEEP@."
DELAY 18
IF IKINKEYII " •) THEN

CHAT
GOTO exit

ENDIF
NEXT
:exit

See Also
CHAT Statement, PAGEOFF Statement, PAGESTATO Function

The PPI. Development Kit

Chapter7 PPL Reference

PAGESTAT() Function

220

Function
Determine if the current user has paged the SysOp.

Syntax
PAGESTAT()

No arguments are required

Return Type and Value

BOOLEAN Returns TRUE if the user has paged the SysOp, FALSE otherwise.

Remarks
One of the features of PCBoard where change is often requested is the operator page facility.
Some people want to be able to configure multiple ranges of availability per day, some want a
different sounding page bell, longer or shorter page attempts, etc, etc. This function, along
with the CHAT, PAGEON and PAGEOFF statements, allow you to implement an operator
page in any way desired.

Examples

IF (PAQBS'rA'r()) THEN
PRINTLN "You have already paged the SysOp,"
PRINTLN "please be patient. "

ELSE
PAGEON
PRINTLN "The SysOp has been paged, continue"

ENDIF

See Also
CHAT Statement, PAGEOFF Statement, PAGEON Statement

The PPL Development Kit

PPL Reference

PCBDAT() Function

Function
Return the path and file name of the PCBOARD.DAT file.

Syntax
PCBDAT(I

No arguments are required

Return Type & Value

Chapter7

STRING Returns the path and file name of the PCBOARD.DAT file for the currnet
node.

Remarks
The PCBOARD.DAT file is the master confiuration file for each node running PCBoard. As
such. there are many useful pieces of information that can be obtained from it. It is a standard
text file with one piece of information per line. You may use the READLINEO function to
read individual pieces of information from it.

Examples

STRING s
LET s = READLINE(ltCBDA'l'(), ll
PRINTLN "PCBOARD.DAT version info - •,s

See Also
GETENVO Function, READLINEO Function

The PPL Development Kit 221

Chapter7 PPL Reference

PCBNODE() Function

222

Function
Return the current node number.

Syntax
PCBNODE()

No arguments are required

Return Type & Value

INTEGER Returns the node number for the current node.

Remarks
You may have need to know what node is in use for certain applications (for example, to
create temporary files with unique names or to restrict features to a particular node or nodes).
This function will retum a nwnber from I to the maximum number of nodes allowed with a
given copy of PCBoard. Note that the node number may not be what is defined in
PCBOARD.DAT if the /FLOAT or /NODE switches are used.

Examples
STRING file
LET file: "TMP"+STRING(ttC81101>110)+•.$$$•
DELETE file

See Also
MAXNODEO Funt!tion

The PPL De,,e/opmenl Kil

PPL Reference Chapter7

PEEKB() Function

Function
Return the value of a byte at a specified memory address.

Syntax
PEEKB (addr)

addr An integer expression with the address of the byte to peek.

Return Type & Value

INTEGER Returns the value of the byte at addr.

Remarks
It is sometimes necessary to read values from memory directly (for example, from the system
BIOS data segment). This function will return a byte quantity (0-255) from a specified
memory address.

Examples

PRINTLN •The current video mode is ",PBBD(DADDRl'-Oh,.t.9b))

See Also
MKADDRO Function, PEEKDWO Function, PEEKWO Function, POKEBO Function,
POKEDWO Function, POKEWO Function, V ARADDR Statement, VAROFF Statement,
V ARSEG Stalement

The PPL Develooment Kil

Chapter7 PPL Reference

PEEKDW() Function

224

Function
Return the value of a double word at a specified memory address.

Syntax
PEEKDW (addr)

addr An integer expression with the address of the double word to peek.

Return Type & Value

INTEGER Returns the value of the double word at addr.

Remarks
It is sometimes necessary to read values from memory directly (for example, from the system
BIOS data segment). This function will return a double word quantity as a signed integer
(-2,147,483,648 - +2,147,483,647) from a specified memory address.

Examples

PRINTLN "Timer ticks since midnight= ",PBBKDN'(NJtaDDR(60h,6Cb))

See Also

MKADDRO Function, PEEKB0 Function, PEEKWO Function, POKEB0 Function,
POKEDWO Function, POKEWO Function, V ARADDR Statement, V AROFF Statement,
V ARSEG Statement

The PPL Dev,/opment Kil

PPL Reference Chapter7

PEEKW() Function

Function
Return the value of a word at a specified memory address.

Syntax
PEE KW I addr)

addr An integer expression with the address of the word to peek.

Return Type & Value

INTEGER Returns the value of the word at addr.

Remarks
It is sometimes necessary to read values from memory directly (for example, from the system
BIOS data segment). This function will return a word quantity (0-65,535) from a specified
memory address.

Examples

PRINTLN "The usable memory size is •, RBKW(lllt1'DDR(&Oh, 1Jh) I

See Also
MKADDRO Function, PEEKBO Function, PEEKDWO Function, POKEBO Function,
POKEDWO Function, POKEWO Function, V ARADDR Statement, V AROFF Statement,
V ARSEG Statement

The PP/, Development Kil

Chapter7 PPL Reference

POKEB Statement

226

Function
Write a byte to a specified memory adchess.

Syntax
POKEB addr, value

addr An integer expression with the address to write to.

value An integer expression with the value to write to addr.

Remarks
You may have need to write directly to memory from time to time. This statement
complements the PEEKBO function and allows you to write a byte value (0-255) to a specific
memory location.

Examples

BOOLEAN flag
INTEGER addr
VARADDR flag, addr
l'ODB a4dr,'.rRtJB ' Set the flag to TRUE the hard way

See Also
MKADDRQ Function, PEEKBO Function, PEEKDWO Function, PEEKWO Function,
POKEDWO Function, POKEWO Fanction, V ARADDR Statement, V AROFF Stat,m,nt,
V ARSEG Stat,m,nt

The PPL ».v,/opm,nt Kit

PPL Reference

POKEDW Statement

Function

Write a double word to a specified memory address.

Syntax
POKEDW addr, value

addr

value

Remarks

An integer expression with the address to write to.

An integer expression with the value to write to addr.

Chapter7

You may have need to write directly to memory from time to time. This statement
complements the PEEKDWO function and allows you to write a double word value
(-2.147,483,648 - +2,147,483,647) to a specific memory location.

Examples
MONEY amt
INTEGER addr
VARADDR amt, addr
•OXBDW adc!r,1234156 ' Set amt to $1234.56 the hard way

See Also
MKADDR0 Function, PEEKB0 Function, PEEKDW0 Function, PEEKW0 Function,
POKEB0 Function, POKEW0 Function, VARADDR Statement, VAROFF Statement,
V ARSEG Statement

The PPL /Jevelopment K;t

Chapter 7 PPL Reference

POKEW Statement

228

Function
Write a word to a specified memory address.

Syntax
POKEW addr, value

addr

value

An integer expression with the address to write to.

An integer expression with the value to write to addr.

Remarks
You may have need to write directly to memory from time to time. This statement
complements the PEEKWO function and allows you to write a word value (0-65,535) to a
specific memory location.

Examples

DATE dab
INTEGER addr
VARA DOR dob, addr
PODW addr,Mltl>ATB(1967,10,l1) Set dob the hard way

See Also
MKADDRO Function, PEEKBO Function, PEEKDWO Function, PEEKWO Function,
POKEBO Function, POKEDWO Function, VARADDR Statement, V ARO FF Statement,
VARSEG Statement

The PPL De,,e/opment Kit

PPL Reference Chapter7

POP Statement

Function
Pop the results of one or more expressions from a stack.

Syntax
POP var (, var]

var A variable of any type in which to retrieve previously pushed expression.

Remarks
This statement will retrieve the results of one or more expressions of any type from a stack into
a list of variables. The values should have been previously pushed with the PUSH statement.
Together PUSH and POP can be used for parameter passing, to create 'local' variables. or to
reverse the order of arguments.

Examples

INTEGER i, tc
STRING s
LET tc = TOKCOUNT (l
WHILE (TOKCOUNT() > OJ PUSH GETTOICENI) push them in order
FORi=lTOtc

POP a pop them in reverse
PRINTLN s

NEXT

INTEGER i
FOR i = 1 TO 10

PRINT i." - "
GOSUB sub

NEXT
END
:sub
PUSH i
LET i = i*i
PRINTLN i
POP i
RETURN

INTEGER v
PRINT ~A cube with dimensions 2X3X4"
PUSH 2,3,4
GOSUB vol
POP V
PRINTLN "has volume ".v
END
:vol
INTEGER w,h.d •o• 4,h,w
PUSH w*h*d
RETURN

The PPL Development Kil

temporarily save i

restore saved i

pass pushed parameters

pop result

pop passed parameter
push result

119

Chapter7 PPL Reference

See Also

PUSH Statement

230 The PPL Development Kit

PPL Reference

PPENAME() Function

Function
Return the base name of an executing PPE file.

Syntax
PPENAME()

No arguments are required

Return Type & Value

Chapter7

STRING Returns the base file name (without path or extension) of the currently
executing PPE.

Remarks
This function will return the name of the PPE file that is running. This can be useful when
writing PPL applications that will use data files that you would like to keep named the same as
the parent application regardless of what the PPE name may change to.

Examples

STRING s
FOP EN 1 , PPEPATH () +•l'BDIIZ (I + ' • CFG" , O_RD, S_DN
FGET 1,s
FCLOSE 1

See Also
PPEPATHO Function

The PPL Development Kil

Chapter7 PPL Reference

PPEPATH() Function

232

Function
Return the path of an executing PPE file.

Syntax
PPEPATH()

No arguments are required

Return Type & Value

STRING Returns the path (without file name or extension) of the currently
executing PPE.

Remarks
This function will return the path of the PPE file that is running. This can be useful when
writing PPL applications that will use files that you would like to keep in the same location as
the parent application regardless of where the PPE may be installed.

Examples

STRING s
FOPEN l, PPBl"A'l'H()+PPENAME(I+" .CFG• ,O_RD, S_DN
FGET l,s
FCLOSE 1

See Also
HELPPATHQ Function, PPENAMEO Function, SLPATHO Function, TEMPPATHO
Function

The PPL Developltll!nt Kit

PPL Reference

PRINT/PRINTLN Statements

Function

Print (write) a line to the screen (with an optional newline appended).

Syntax
PRINT exp [, exp]
-or-
PRINTLN [exp [, exp]]

exp An expression of any type to evaluate and write to the screen.

Remarks

Chapter7

These statements will evalutate zero, one or more expressions of any type and write the results
to the display. The PRINTLN statement will append a newline to the end of the expressions;
PRINT will not. Note that at least one expression must be specified for PRINT, unlike the
PRINTLN statement which need not have any arguments passed to it. Finally. both
statements will process all @ codes and display them as expected.

Examples

PRJ:11'1' •'l'he nuaa of the currently running PPB file is "
PRIIITLII PPDAMB() , • • •
PRilft' •'l'he path where it is located is ■
Hilft'LII' PPBPATJI(),•,•
PRillT •'l'he 4ate is •,Daft(),• and tb■ time i• ",TIME(),•.•
D.Ilft'LII
PRIIIT •Ulrrbis is bright white Oil blue .•• •
PRill'l'LII •bow 4o yau like it R"J:RSff•

See Also
MPRINT/MPRINTLN Stalements, OPTEXT Stalement, SPRINT/SPRINTLN Sta:ements

The PPL Development Kit 133

Chapter7 PPL Reference

PROMPTSTR Statement

234

Function

Prompt the user for a string of text in a specific format.

Syntax
PROMPTSTR prompt, var, len, valid, flags

prompt An integer expression with the prompt number from PCBTEXT to display
to the user.

The variable in which to store the user's input. var

len

valid

flags

An integer expression with maximum length of text to input.

A string expression with the valid characters that the user may enter.

An integer expression with flags to modify how the statement works.

Remarks
This statement will accept a string of input from the user. up to the length defined. The
prompt parameter will be used to find the prompt from PCBTEXT (which includes the prompt
color) to display to the user. Only characters found in the valid parameter will be accepted.
However, the flags parameter may affect how prompt is displayed and the valid characters that
are accepted. Individual flags may be added together as needed. Several functions exist to
easily specify commonly used valid character masks. They are MASK_ALNUM0,
MASK_ALPHA0, MASK_ASCD0, MASK_FILE0, MASK_NUM0, MASK_PATH0,
and MASK_PWD0. Defined flag values are AUTO, DEFS, ECHODOTS, ERASELINE,
FIELDLEN, GUIDE, HIGHASCD, LFAFTER, LFBEFORE, NEWLINE, NOCLEAR,
STACKED, UPCASE, WORDWRAP, and YESNO.

Examples

BOOLEAN b
DATE d
INTEGER i
MONEY m
STRING s
TIME t
' NOTE: prompt 706 is used here for all statements;
' you may use any prompt you wish
E'JlOIUl''l'B!l'll '106,b, 1, "10•,LUB'l'OU+liBWLlD
E'llOIIE''l'BD '106, 4, 8, •0123.56'189~" ,liBWLJ:111:+IIOCLBAR.
E'llOIIE''l'S'l'R '106, i,20,IIUK._NOII() ,BBWLlllB
E'llOHE''l'S'l'll '106,m, 9,HASJLNUM() +•. • ,BBWLlllB+DBPS+PlBLDLBN
E'ltOKE''l'S'l'll '106, ■ ,63,HUlt_JUICll(I ,DWLJ:NB♦l'J:BLDLBll+GUXDB
E'llOlll''l'B'l'R '106,t., 5, "0123.56789•+•; • ,NSWLlD+Ll'Al'TBll
PRINTLN b," ",d," ",i
PRINTLN m," ",S," ",t

The PPL Development Kil

PPL Reference Chapter7

See Also
INPUT Statement, INPUT ... Statements, INPUTSTR Sttltement, INPUTTEXT Statement

The PPIJ Develoa111ent Kit

Chapter 7 PPL Reference

PSA() Function

236

Function
Determine whether or not a given PSA is installed.

Syntax
PSA(num)

num An integer expression with the number of the PSA to check for the
existence of.

Return Type & Value

BOOLEAN Returns TRUE if the specified PSA exists or FALSE if it doesn't exist for
the following values of num:

6

Remarks

The Alias PSA;

The Verification PSA.

The Address PSA;

The Password PSA;

The Statistics PSA.

The Notes PSA.

This function allows you to determine whether or not a given PCBoard Supported Allocation
(PSA) is installed. For each of the six PSAs it will return TRUE if installed or FALSE if not
installed. It is useful when you want to write a generic PPL application that will access one or
more PSAs that may or may not be installed.

Examples
STRING ynStr(l)
LET ynStr(O) :::, "NO"
LET ynstr 11) " "YES"
PRINTLN " Alias Support Enabled? ",ynStr (PSA(l) I
PRINTLN "Verification Support Enabled? ",ynStr(PSA(2:) I
PRINTLN " Address Support Enabled? ",ynStr(PSA(3) l
PRINTLN " Password Support Enabled? ",ynStr (PSA(•l)
PRINTLN " Statistics Support Enabled? ",ynStr(PSA(S))
PRINTLN " Notes Support Enabled? ",ynStr(PSA(6) J

See Also
VERO Function

Th• PPL Development Kit

PPL Reference Chapter 7

PUSH Statement

Function
Push (save) the results of one or more expressions on a stack.

Syntax
PUSH exp (. exp)

exp An expression of any type to evaluate and push.

Remarks
This statement will evalutate one or more expressions of any type and push the results onto a
stack for temporary storage. The results of those expressions may be retrieved ,·ia the POP
statement. Together PUSH and POP can be used for parameter passing, to create 'local'
variables. or to reverse the order of arguments.

Examples
INTEGER i, tc
STRING s
LET tc = TOKCOUNT (l
WHILE (TOKCOUNT() > OJ PVSB GBHODN'() ' push them in order
FORi=lTOtc

POP s pop them in reverse
PRINTLN s

NEXT

INTEGER i
FOR i = 1 TO 10

PRINT i," -
GOSUB sub

NEXT
END
:sub
FD'SB i
LET i = i*i
PRINTLN i
POP i
RETURN

INTEGER v
PRINT "A cube with dimensions 2X3X4"
PUSH 2, 3,4
GOSUB vol
POP v
PRINTLN "has volume ",v
END
:vol
INTEGER w,h,d
POP d,h,w
PD'IB w•b•d
RETURN

The PPL Development Kil

temporarily save i

restore saved i

pass pushed parameters

pop result

pop passed parameter
push result

Chapter7 PPL Reference

See Also
POP Statement

238 The PPL Development Kit

PPL Reference

PUTUSER Statement

Function
Copy values from predeclared variables to user record.

Syntax
PUTUSER

No arguments are required.

Remarks

Chapter 7

There are many predeclared variables which may be used to access and change user
information. However. their values are undefined until you use the GETUSER statement. and
any changes you make don't take hold until you use the PUTUSER statement.

Examples

IF (PSA(3J I THEN
GETUSER
INPUT •Addr l",U_ADDR(O)
INPUT •Addr 2",U_ADDR(l)
INPUT •City ",U_AODR(2)
INPUT ·state ",U_ADDR(3J
INPUT •ztP ",U_ADDR(4J
INPUT •entry ",U_ADDR(S)
PDTO'SBR

ENDIF

See Also
GETUSER Stat,m,nt

Tlte PPL Dndop111ent Kk 239

Chapter7 PPL Reference

QUEST Statement

240

Function
Allow the user to answer a specified script questionnaire.

Syntax
QUEST scrnurn

scrnum The number of the script for the user to answer. Valid values are l
through the number of script questionnaires available.

Remarks
This statement will present the user a specified script questionnaire number to answer. The
SCR.LST file for the current ccnference will be searched for the script. If the questionnaire
number is invalid (less than I or greater than the highest script number defined) then nothing
will be displayed.

Examples

INTEGER mun
INPUT - script to answer - , num
QtJBS'r :a.um.

See Also

BLT Statement, DIR Statement, JOIN Statement

The PPL ».v,/opmmt Kit

PPL Reference Chapter7

RANDOM() Function

Function
Return a random value between O and a specified limit.

Syntax
RANDOM (1 imi t)

limit An integer expression with the maximum random value desired.

Return Type & Value

INTEGER Returns the random number in the range O to limit.

Remarks
Random numbers have many applications from statistics to video games. This function allows
you to generate pseudo-random numbers in the range O to limit inclusive.

Examples

INTEGER x,y
WHILE (KINKEY() <> " ") DO

CLS
LET x = l+RARD011(50)
LET y "' l+RDDOll(Z:Z)
COLOR l+RAIIDOHl141
ANSIPOS x,y
PRINT "Hit the SPACE BAR to continue"
DELAY 18
ANSIPOS x,y
CLREOL

ENDWHILE

See Also
ABSO Function

The PPL Development Kit

Chapter 7 PPL Reference

RDUNET Statement

242

Function
Read information from the USERNET file for a specific node.

Syntax
RDUNET node

node An integer expression with the node to read.

Remarks
To facilitate intemode communications, a file named USERNET.:XXX is maintained with an
entry for each node on the system. This file is used by the BROADCAST command of
PCBoard and to prevent multiple simultaneous logins, among other tlrings. This statement
may be used to read information for any node.

Examples

RDml'B'l' PCBIIODB ()
WRUNET PCBNODE(). UN_STAT(I' UN_NAME(I. UN_CITY(). "Running "+PPENAME()' ""
RDtJIIBT 1
WRUNET 1. UN_STAT (), UN_NAME(), UN_CITY(), UN_OPER(), "Hello there node l"

See Also

BROADCAST Statement, UN_,,,0 Functions, RDUNET Statement

The PPL Development Kit

PPL Reference

RDUSVS Statement

Function

Read a USERS.SYS file in from disk.

Syntax
RDUSYS

No arguments are required

Remarks

Chapter7

Some DOOR applications require a USERS.SYS file to access infonnation about the caller.
This statement allows you to read the USERS.SYS file back into memory in case any changes
were made by the DOOR during the SHELL statement. This statement should onl~· be used
after a SHELL statement that was proceeded by a WRUSYS statement.

Examples

INTEGER ret
WRUSY'S
SHELL FALSE' ret' "MYAPP. EXE" • " "
llDO'SYS

See Also
SHELL Statement, WRUSYS Statement

The PP/. Development K;t 1../3

Chapter7 PPL Reference

READLINE() Function

Function
Read a specific line number from a text file.

Syntax
READLINE (file, line)

file A string expression with the file name to read from.

1 ine An integer expression with the line number to read.

Return Type & Value

STRING Returns the specified line number from file.

Remarks
It is often convienient to read a specified line number from a file without going to all the
overhead of opening, reading and closing. This function will open the file in read mode for
share deny none access and quickly read up to the line number you specify. If the line you
want doesn't exist an empty string will be returned. Additionally, this function will remember
the last file and line read so that it may quickly continue where it left off if you try to read a
number of lines sequentially from the same file. Finally, the last file specified will remain
open until the PPE exits and returns control to PCBoard.

Examples

PRINTLN "This system is running on IRQ ",JUUU>LJ:IIB(l'CBI>A'rl), 158)
PRINTLN "with a base IO address of ",JlBADLlllB(l'CBI>A'r(),159)

See Also
DELETE Statement, EXISTO Function, FILEINFO Function, RENAME Statement

The PPL Development Kit

PPL Reference Chapter7

REG ... () Functions

Function
Get the value of a register.

Syntax
REG ... (I

No arguments are required
REG should be followed by one of the following register names: AH. AL. AX, BH. BL. BX.
CF, CH, CL, ex, DH, DI, DL, DS, DX, ES, For SI.

Return Type & Value

BOOLEAN

INTEGER

Remarks

(REGCF0 only) Returns TRUE if the cany flag is set. FALSE otherwise.

(All others) Returns the value of the specified register.

There are actually 18 different functions that return the values of registers. AL. AH. BL. BH.
CL, CH, DL, and DH will always return byte sized values (0-255). AX. BX, CX. DX. DI. SI.
DS, and ES will always return word sized values (0-65535). F (flags) returns the seuings for
the various 80x86 processor flags. CF is a subset of F in that it only returns the status of the
carry flag. It exists because the carry flag is often used to report success or failure in assembly
language. The REGFO function returns the settings for the folloning flags: Carry. Parity.
Auxilliary. Zero, Sign, Trap, Interrupt, Direction, and Overflow. Their bit \"aloes are as
follows:

D A

800h 400h 200h 100h 080h 040h 020h 010h 008h 004h 002h OOlh

The PPL Development Kit

Chapter7

246

Examples

Create subdirectory - DOS function 39h
INTEGER addr
STRING path
LET path= "C:\$TMPDIR$"
VARADDR path. addr
DOINTR 21h, 39h, 0, 0,addrl00010000h, 0, o, o, addr/000l0000h, 0
IF IRBGCI!'() & (RBGalt() = 3)) THEN

PRINTLN •Error: Path not found•
ELSE IF (ltBGCF() & (RBGAX() = SJ) THEN

PRINTLN •Error: Access Denied"
ELSE IF (ltBQCF()) THEN

PRINTLN •Error: Unknown Error"
ELSE

PRINTLN •Directory successfully created ...
ENDIF

See Also
DOINTR Statement

PPL Reference

The PPL »..elopment Kit

PPL Reference Chapter7

RENAME Statement

Function
Rename (or move) a file.

Syntax
RENAME old, new

old A string expression with the old path and/or file name.

new A string expression with the new path and/or file name.

Remarks
Similar to how the RENAME command works from the DOS prompt, this statement will take
a file and give it a new name. Unlike the RENAME command, the RENAME statement \\ill
not accept wildcards in the old or new parameters. Also, it doesn't require that the old path
and the new path be the same (the drive letters must match. but the paths need not). so it may
be used to move files from one location to another on a single drive. So, you could use it to
move a file from C:IPCBINODEI to C:IPCBINODE2 (renaming it at the same time if you
wish), but you couldn~ use it to move a file from C:IPCBINODEI to D:IWORKINODEI.

Examples

' Swap the PCBOARD DAT & NXT files
ltBDMB •PCBOAJtD.DA'l'", •PCBOARD.'l'IIP"
ltlllGIIZ •PCBOA1tD.111XT•, •tteBOAltD. DA.'1'"
ltBDIIB "PCBOAltD.'1'111'", "PCBOAltD.JIXT"

' Move the file to the backup directory
1UD1U1S "PPB.LOG", "LOl1BU\"+I2S(DA'1'B() *86,oO+'l'IIIB(), 36)

See Also
DELETE Stalement, EXISTO Function, Fll.EINFO Function, READLINEO Function

Tit• PPL Dnelopment Kit U7

Chapter7 PPL Reference

REPLACE() Function

248

Function
Change all occurences of a given character to another character in a string.

Syntax
REPLACE (str, old, new)

str Any string expression.

old A string expression with the old character to be replaced.

new A string expression with the new character to replace with.

Return Type & Value

STRING Returns sir with all occurences of old changed to new.

Remarks
This function will search a string for a given character and replace all instances of that
character with another character. This can be useful in many scenarios, especially when
fonnatting text for display purposes.

Examples

PRINTLN "Your internet address on this system is:"
PRINTLN RBPLACB(LOWBll('O'_RAIIB()),. •, •• •), "@clarkdev.com•

See Also
STRIPO Function, STRIPATXO Function

The PPL Development Kit

PPL Reference

RESETDISP Statement

Function

Reset the display to allow more infonnation after an abort.

Syntax
RESETDISP

No arguments are required

Remarks

Chapter7

PCBoard normally automatically counts lines and, if enabled, pauses the display after every
screenful. The user may (unless disabled) abort the display at any MORE? prompt or with the
'Kl'X keys. If this happens no further information will be displayed until you use the
RESEmISP statement. You can check to see if RESETDISP is necessary (ie, has the user
aborted the display) with the ABORT0 function.

Examples

INTEGER I
STARTDISP FCL

While the user has not aborted, continue
WHILE I ! ABORT () I DO

PRINTLN ~1 is equal to ", I
INC I

ENDWHILE
RBBB'l'DISP

See Also
ABORTQ Function, ST ARTDISP Statement

The PPL Development Kit

Chapter7 PPL Reference

RESTSCRN Statement

250

Function

Restore the screen from a previously saved buffer.

Syntax
RESTSCRN

No arguments are required

Remark
PCBoard will save and restore the screen before and after certain functions, such as SysOp
chat. This allows the user to continue right where he left off without having to remember what
was on the screen before being interrupted. You can add that same functionality with the
SA VESCRN and RESTSCRN statements. The SA VESCRN statement allocates memory for
a buffer in which to save the screen. If the SA VESCRN statement isn't followed by a
RESTSCRN statement then that memory will never be deallocated. Finally, this statement
will work regardless of ANSI availability; the screen is only saved up to the position of the
cursor and this statement assumes that it can safely restore the screen using standard teletype
conventions to just scroll the data onto the display.

Examples
SAVESCRN
CLS
PRINTLN "We interrupt your regular BBS session"
PRINTLN "with this important message:·
NEWLINE
PRINTLN "A subscription to this system only costs $5 ! "
PRINTLN "Subscribe today! •
NEWLINES 2
WAIT
RllffSCltlt

See Also
SA VESCRN Statement

The PPL Deve/op111ent Kil

PPL Reference Chapter7

RETURN Statement

Function
Transfer program control back to a previously saved address.

Syntax
RETURN

No arguments are required

Remarks
It is often necessary to perform an indentical set of instructions several times in a program.
This leaves you with two choices. One. rewrite the code several times (and hope you do it
right each time), or two, write it once as a subroutine, then use GOSUB to run it. This
statement will save the address of the next line so that a RETURN statement at the end of the
subroutine can instruct PPL to resume execution with the line following the GOSUB.

Examples

STRING Question. Answer
LET Question = "What is your street address
GOSUB ask
LET Question = "What is your city, state and zip
GOSUB ask
END

:ask ' Sub to ask a question, get an answer, and log them to a file
LET Answer = • "
PRINTLN "@XOE", Question
INPUT " • 'Answer
NEWLINES 2
FPUTLN 0, "Q: ",STRIPATX(QuestionJ
FPUTLN O, "A: " , Answer

""""""'
See Also

END Statement, GOSUB Statement, GOTO Statement, FOR/NEXT Statement,
IF/ELSEIF/ELSE/ENDIF Statement, STOP Statement, WHILE/ENDWHILE Statement

The PPL Development Kit 151

Chapter7 PPL Reference

RIGHT() Function

252

Function
Access the right most characters from a string.

Syntax
RIGHT (str, chars)

str

chars

A string expression to take the right most characters of.

An integer expression with the number of characters to take from the right
end of str.

Return Type & Value

STRING Returns a string with the right most chan characters of str.

Remarks
This function will return a sub string with the right most chars characters of a specified string.
This can be useful in data processing as well as text formatting. If chan is less than or equal
to O then the returned string will be empty. If chars is greater than the length of sir then the
returned string will have spaees added to the right to pad it out to the full length specified.

Examples

WHILE IRANDOM(250J <> OJ PRINT RIGIIT(RAIIDOK(250) ,4,), ~

STRING s
FOPEN l,"DATA.TXT",O_RD,S_DN
WHILE (!FERR(l)J DO

FGET 1, s
PRINT RTRIM(LEFT(s,25)," "),~
PRINTLN RIGll'r(a,LBll(s)-25)

ENDWHILE
FCLOSE 1

See Also
LEFTO Function, MIDO Function

The PPL Development Kit

PPL Reference

RTRIM() Function

Function
Trim a specified character from the right end of a string.

Syntax
RTRIM(str,ch)

str Any string expression.

ch A string with the character to strip from the right end of str.

Return Type & Value

STRING Returns the trimmed str.

Remarks

Chapter7

A common need in programming is to strip leading and/or trailing spaces (or other
characters). This function will strip a specified character from the right end of a string and
return the trimmed string.

Examples

STRING s
LET s " " TEST
PRINTLN Jl'l'RIK(s,• ") ' Will print TEST"
PRINTLN R'l'JlJ:N(• ••••• DA•+·TA ••••• ","·"' Will print
PRINTLN R'l'R:IN(• ••••• DA•+•'l'A ••••• •, 11 ") • \iill print

See Also
L TRIMO Function, TRIMO Function

The PPL /Jevelopment Kit

.DATA"
.. DATA.

1S3

Chapter7 PPL Reference

S21() Function

254

Function
Convert a string in a specified number base to an integer.

Syntax
S2I(str,base)

s tr Any string expression to convert to integer format.

base An integer expression with the number base (2 through 36) to convert
from.

Return Type & Value

INTEGER Returns str convened from the specified number base to an integer.

Remarks
People work with decimal (base 10) numbers, whereas computers work with binary (base 2)
numbers. However. it is often more convienient to store or input numbers in a format other
than decimal for clarity, compactness, or other reasons. This function will convert a string in
any number base from 2 to 36 to a number. So, S21("1010" ,2) would return a 10;
S2l("Z" ,36) would return 35.

Examples

INTEGER i
STRING s
INPUTTEXT "Enter a string (any base)",s,@XOE,40
FOR i = 2 TO 36

PRINTLN s,· = ",S2I(■ .i)," base ",i
NEXT

See Also
12S0 Function

The PPL Development Kit

PPL Reference Chapter7

SAVESCRN Statement

Function
Save the screen to a buffer for later restoration.

Syntax
SAVESCRN

No arguments are required

Remark
PCBoard will save and restore the screen before and after certain functions, such as SysOp
chat. This allows the user to continue right where he left off without having to remember what
was on the screen before being interrupted. You can add that same functionality with the
SA VESCRN and RESTSCRN statements. The SA VESCRN statement allocates memory for
a buffer in which to save the screen. If the SA VESCRN statement isn't followed by a
RESTSCRN statement then that memory will never be deallocated. Finally. this statement
will work regardless of ANSI availability; this statement will only save the screen up to the
position of the cursor. It is assumed that the screen can be safely restored using standard
teletype conventions to just scroll the data onto the display.

Examples

SAVBSCRII
CLS
PRINTLN "We interrupt your regular BBS session"
PRINTLN "with this important message:"
NEWLINE
PRINTLN "A subscription to this system only costs $5 ! "
PRINTLN • Subscribe today! •
NEWLINES 2
WAIT
RESTSCRN

See Also
RESTSCRN Statement

T/te PPL Development Kil 25J

Chapter7 PPL Reference

SCRTEXT() Function

256

Function
Access text and attribute information directly from BBS screen memory.

Syntax
SCRTEXT (x, y, len, color)

An integer expression with the x coordinate (column) from which to read
screen memory.

y An integer expression with the y coordinate (row) from which to read
screen memory.

len An integer expression with the length, in columns, of the string to read
from screen memory.

color A boolean expression with TRUE if color information should be included,
FALSE otherwise.

Return Type & Value

STRING Returns the specified region of screen memory.

Remarks
This function is useful for temporarily saving a portion of screen memory, with or without
color information. If the color parameter is set to TRUE color information will be included in
the form of@X codes embedded in the text. Note that the maximum length of a string is 256
characters; however, a row of 80 characters could be as long as 400 characters (4 bytes for the
@X code and I byte for the character itself). You should generally limit yourself to a length of
51 characters or less if you want to include color information unless you are certain that
attribute changes will not exceed the 256 character string limit.

Examples

scroll the screen to the left 5 columns and down 3 rows
INTEGER r
STRING s
FOR r = 20 TO 1 STEP -1

LET s = SCR'l'&XT(&,r,75,'l'RtJB)
ANSIPOS 1. r+J
CLREOL
PRINT s

NEXT
f'ORr=lTOJ

ANSIPOS 1,r
CLREOL

NEXT

The PPL De,,e/opment Kil

PPL Reference Chapter 7

See Also
INSTRO Function, LENO Function, SPACEO Function, STRINGO Function

The PPL Development Kit 157

Chapter 7 PPL Reference

258

SEC Constant

Function
Set the security level specific file search flag in a DISPFILE statement.

Value
2= 10b=2o=2h

Remarks
The DISPFILE statement will allow you to display a file to the user, and optionally to have
PCBoard look for alternate security, graphics, and/or language specific files. This flag
instructs PCBoard to search for alternate security level files via the security level suffix. The
current security level may be obtained with the CURSECO function.

Examples

STRING s
DISPFILE "MNUA",SBC+GRAPH+LANG
INPUT "Option"' s

See Also
CURSECO Function, DISPFILE Statem,nt, GRAPH Con,tant, LANG Con,tant

Th, PPL Dev,lopm,nt Kit

PPL Reference

SEC() Function

Function
Extract the second of the minute from a specified time of day.

Syntax
SEC(texp)

texp Any time expression.

Return Type & Value

Chapter7

INTEGER Returns the second of the minute from the specified time expression (texp).
Valid return values are from Oto 59.

Remarks
This function allows you to extract a particular piece of information about a TIME value. in
this case the second of the minute of the time of day expression.

Examples

PRINTLN "The minute is ",SBC('l'IHB())

See Also
HOURQ Function, MINO Function, TIMEQ Function

The PPL Development KiJ 259

Chapter7 PPL Reference

SENDMODEM Statement

260

Function

Send a siring to the modem.

Syntax
SENDMODEM str

str A string expression to send to the modem.

Remarks
The primary use of this statement is to send commands to a modem when no one is online.
For example, you would use this to send a dial command to the modem in a call back PPL
app1ication. However, it is not restricted to sending commands. Note that modem commands
must be terminated by a caniage return and that this statement will not automatically do it for
you. This allows you to send a command to the modem is several stages and only terminate
the final stage with a carriage return.

Examples

BOOLEAN flag
CDCHKOFF
KBDCHKOFF
DTROFF
DELAY 18
DTRON
SBNDMODEM "ATD'l""
SBHDIIOI)BN "5551212"
SBNDMODBM CIIR (13)
WAITFOR "CONNECT", flag, 60
IF (!flag) LOG "No CONNECT after 60 seconds". FALSE
KBDCHKON
CDCHKON

See Also
WAITFOR Stalement

The PPL Development Kit

PPL Reference Chapter 7

SHELL Statement

Function

Shell out to a program or batch file.

Syntax
SHELL vi ace, retcode, prog, cmds

viacc A boolean expression with value TRUE if the shell should be made via
COMMAND.COM; FALSE ifit should be shelled to directly.

retcode A variable in which to store the return code.

prog A string expression with the file name to shell to.

cmds A string expression with any arguments to pass to prog.

Remarks
You may have have need to run a COM, EXE or BAT file from your PPE. You may need to
do this to simulate running a DOOR or to access some service not normally available from
PCBoard or PPL. This function will allow you to do that. If the viacc parameter is TRUE
(you want COMMAND.COM to load the specified file) your PATH environment rnriable \\ill
be searched for prog if it isn't in the current directory or isn't fully qualified (path and
extension), just as it would be if entered on the command line. If vi ace is FALSE then you
must specify the path and extension of the program to run. Additionally. the retcode variable
will only be meaningful if vi ace is FALSE.

Examples

INTEGER re
SBl!lLL 'l'lltn!!l,rc,•DOOR•,•·

INTEGER re
STRING p,c
LET p "' "DOORWAY .EXE"
LET c "' "com2 /v:d"O /m:600 /g:on /o: /k:vO /x: /c:dos"
SBl!lLL PALSB,rc,p,c

See Also
CALL Statement, RDUSYS Statement, WRUSYS Statement

The PPL Development Kil 161

Chapter7 PPL Reference

SHOWOFF Statement

262

Function

Tum off showing information to the display.

Syntax
SHOWOFF

No arguments are required

Remark
This statement allows your PPL application to tum off writing information to the local and
remote displays. Used in conjunction with the SHOWSTATO function and the OPENCAP,
CLOSECAP, and SHOWON statements it allows you to temporarily tum off the display
while capturing output to the screen. This can be useful anytime you want to automate a
feature for the user and allow them to download the resulting capture file instead of spending
lots of time online.

Examples
BOOLEAN ss
LET ss = SHOWSTAT (J
SHOWOFF
OPENCAP "CAP"+STRING(PCBNODE()) 'ocFlag
IF (ocFlag) THEN

DIR "U;NS"
CLOSECAP
KBDSTUFF "FLAG CAP•+STRING(PCBNODE()J+CHR{l3)

ENDIF
IF (ss) THEN

SHOWON
ELSE

SHOWOFF
ENDIF

See Also
CLOSECAP StaJement, OPENCAP StaJement, SHOWON StaJement, SHOWSTATQ
Function

The PPL Development Kit

PPL Reference

SHOWON Statement

Function
Tum on showing information to the display.

Syntax
SHOWON

No arguments are required

Remark

Chapter 7

This statement allows your PPL application to turn on writing information to the local and
remote displays. Used in conjunction with the SHOWSTATO function and the OPENCAP.
CLOSECAP, and SHOWOFF statements it allows you to temporarily turn off the display
while capturing output to the screen. This can be useful anytime you want to automate a
feature for the user and allow them to download the resulting capture file instead of spending
lots of time online.

Examples

BOOLEAN ss
LET ss " SHOWSTAT (J
SHOWOFF
OPENCAP "CAP"+STRING (PCBNODE () I • ocFlag
IF (ocFlag) THEN

DIR "U;NS"
CLOSECAP
KBDSTUFF "FLAG CAP"+STRING (PCBN00E()) +CHR (13)

ENDIF
IF (SS) THEN

SIIOWOII
ELSE

SHOWOFF
ENDIF

See Also
CLOSECAP Statement, OPENCAP Statement, SHOWOFF Statement, SHOWSTATO
Function

The PPL Development Kit 163

Chapter7 PPL Reference

SHOWSTAT() Function

264

Function
Determine if data is being shown on the display.

Syntax
SHOWSTAT()

No arguments are required

Return Type and Value

BOOLEAN Returns TRUE if data is being shown on the display, FALSE otherwise.

Remarks

This function allows your PPL application to determine the status of writing infonnation to the
local and remote displays. Used in conjunction with the OPENCAP, CLOSECAP,
SHOWON, and SHOWOFF statements it allows you to temporarily tum off the display while
capturing output to the screen. This can be useful anytime you want to automate a feature for
the user and allow them to download the resulting capture file instead of spending lots of time
online.

Examples

BOOLEAN ss
LET ss = SBOWS!l'A'l' ()
SHOWOFF
OPENCAP "CAP" +STRING (PCBNODE (l) • ocFlag
IF (ocFlag) THEN

DIR "U;NS•
CLOSECAP
KBDSTUFF •FLAG CAP"+STRING(PCBNODE())+CHR(l3J

ENDIF
IF (ss) THEN

SHOWON
ELSE

SHOWOFF
ENOIF

See Also
CLOSECAP Stalement, OPENCAP Statement, SHOWOFF Statement, SHOWON
Statement

The PPL Development Kit

PPL Reference

SLPATH() Function

Function
Return the path of login security files as defined in PCBSetup.

Syntax
SLPATH()

No arguments are required

Return Type & Value

STRING Returns the path of the PCBoard login security files.

Remarks

Chapter 7

This function will return the path where login security files are located as defined in
PCBSetup. It can be used to create and change them on the fly.

Examples

FAPPEND l, SLPA'l'JI () +STRING (CURS EC) , O_WR, S_DB
FPUTLN l,U_NAMEll
FCLOSE 1

See Also
HELPPAIBO Function, PPEPATHO Function, TEMPPATHO Function

The PPL Development Kit

Chapter7 PPL Reference

SOUND Statement

266

Function
Tum on the speaker on the local computer at a specific frequency.

Syntax
SOUND freq

freq An integer expression with the frequency (in hertz) at which to tum on the
speaker or O to tum off the speaker.

Remarks
This statement can be used to generate just about any tone desired on the speaker on the local
PC. It has no effect on the remote computer and will only work with the built in speaker (in
other words, it has no way of communicating with advanced sound cards). You specify the
frequency of the tone you wish to generate in hertz and pass it to the statement, or pass O to
tum off the speaker.

Examples

PAGEON
FOR i =- 1 TO 10

MPRINT CHR(7)
SOUND HO
DELAY 9
SOUND 0
DELAY 9
IF (KINKEY (l ~ ~) THEN

CHAT
GOTO exit

ENOIF
NEXT
:exit

See Also

DELAY Statement

The PPL Development Kit

PPL Reference

SPACE() Function

Function
Create a string with a specified of spaces.

Syntax
SPACE(len)

Chapter7

len An integer expression with the number of spaces for the new string.

Return Type & Value

STRING Returns a string oflen spaces.

Remarks
This function is useful when formatting screen displays without ANSI and when \\riling
formatted information out to a file. It will create a string of the length specified with nothing
but spaces. The returned string may have anywhere from O to 256 spaces.

Examples

PRINT RANDOM(9) ,HACB(S), RANDOM(91 ,SPACB(S), RANDOM(9l

FCREATE 1, "NEWFILE.DAT" ,O_WR, S_DB
FPUTLN 1. •NAME" ,SPACB(24), "CITY-, SPACB(2l), "PHONE"
FCLOSE 1

See Also
INSTRO Function, LENO Function, SCRTEXTO Function, STRINGO Function

The PPL Development Kit

Chapter 7 PPL Reference

268

SPRINT/SPRINTLN Statements

Function
Print (write) a line to the local screen {BBS) only (with an optional newline appended).

Syntax
SPRINT exp [, exp]
-or-
SPRINTLN [exp[,exp]]

exp An expression of any type to evaluate and write to the caller's screen.

Remarks
These statements will evalutate zero, one or more expressions of any type and write the results
to the BBS for the SysOp's display. The SPRINTLN statement will append a newline to the
end of the expressions; SPRINT will not. Note that at least one expression must be specified
for SPRINT, unlike the SPRINTLN statement which need not have any arguments passed to
it. These statements only send information to the local display and do not interpret @ codes:
however, complete ANSI sequences will be interpreted.

Examples

SPRINT n'l'be name of tbe currently running PPB file ia •
SPllIN'l'LN PPBNAMB () , n • n

SPRINT n'l'be path where it is located ia ■
SPllillF.l'LN PPEPA'l'H(),"."
SPRINT "The date is •,DATE()," and the time ia ",'l'IME(),"."
SPRIN'l'LN

See Also
MPRINT/MPRINTLN Statements, PRINT/PRINTLN Statements

The PPL Development Kit

PPL Reference Chapter7

STACKED Constant

Function
Set the allow stacked commands flag in an INPUTSTR or PROMPTSTR statement.

Value
16 = IO000b = 200 = !Oh

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to allow space and
semi-colon characters to be input independent of the valid character string specified. This
facilitates entering stacked commands (commands separated by space or semi-colon
delimiters) by only requiring a single value be set in the input statement instead of having to
add " ~" to every valid character mask.

Examples

STRING cmds
INPUTSTR •commandsM, cmds, @XOE, 60. MASK_ASCII I l , S'l'ACDD
TOKENIZE cmds
LET cmds " GETTOKEN I)
IF (cmds " "QUIT" l END
KBDSTUFF cmds+TOKENSTR ()

See Also
INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit

Chapter7 PPL Reference

STARTDISP Statement

270

Function
S1an PCBoard's display routines in a specified mode.

Syntax
STARTDISP mode

mode An integer expression with the mode for display.

Remarks
PCBoard has two modes for displaying information: non stop and line count. Non stop mode
(initiated by passing FNS, for Force Non Stop, as the mode parameter) displays infonnation
without regard to how fast the display is or whether or not the user can read it all. Line count
mode (initiated by passing FCL, for Force Count Lines, as the mode parameter) displays
information while counting lines and pausing after every screenful to wait for user input.
Finally, NC may be specified to reinitialize the internal display counters without changing the
current mode.

Examples

S'l'All'l'DISP FCL
FOR i = 1 TO 100

PRINTLN "Line ", i
NEXT
S'l'All'1'DJ:SP J'NS
FOR i = l TO 100

PRINTLN "Line "' i
NEXT
S'l'All'l'DISP IIC
FOR i = 1 TO 100

PRINTLN "Line ", i
NEXT

See Also

ABORT0 Function, RESETDISP Statement

The PPL Development Kit

PPL Reference Chapter7

STOP Statement

Function
Abort PPE execution.

Syntax
STOP

No arguments are required

Remarks
This statement may be used to abnormally terminate PPE execution at any point. The only
real difference between this statement and END is whether or not information written to
channel O is saved when the . END will save the output to the script answer file; STOP \\ill
not.

Examples

STRING Question, Answer
LET Question = -What is your street address
GOSUB ask
INPUTYN "Save address",Answer,@XOE
IF (Answer = NOCHAR (l) S'l'Ol'
END

:ask · Sub to ask a question. get an answer, and log them to a file
LET Answer "' " "
PRINTLN "@XOE" ,Question
INPUT " • • Answer
NEWLINES 2
FPUTLN o.•o: ",STRIPATX(Question)
FPUTLN o. •A: ".Answer
RETURN

See Also
END Statement, RETURN Statement

The PPL Development Kit 171

Chapter 7 PPL Reference

272

STRING Type

Function
Declare one or more variables of type string.

Syntax
STRING var I arr Is I, s [, s) I) [,varlarr(s I, s [, s) I) J

var The name of a variable to declare. Must start with a letter [A-ZJ which
may be followed by letters, digits [0-9] or the underscore LJ. May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions
as var are used.

s The size (0-based) of an array variable dimension. Any constant integer
expression is allowed.

Remarks
STRING variables are stored as pointers arrays of characters from 0 to 257 bytes in size. If
the array has O or I characters in it, it is a O length string. Arrays with 2 to 257 characters
have a length of the array size minus one. Valid string characters are ASCII I through ASCII
255. ASCII O is reserved for terminating the string and may not appear in the middle of the
string. A STRING assignment to an INTEGER will convert the string to the four byte bina,y
integer value (similar to BASIC's VAL function and C's atol function). An INTEGER to
STRING assignment will result in a string with the representation of the number (similar to
BASIC's STRS function and C's ltoa function). If a STRING is assigned to or from any other
type, an appropriate conversion is perfonned automatically by PPL.

Examples

S'l'JlIIIG cbar, ■tr. tap, lahela(lO), DlUU■ (ao,:u

See Also
BOOLEAN Type, DATE Type, INTEGER Type, MONEY Type, TIME Type

The PPL Development Kit

PPL Reference Chapter7

STRING() Function

Function

Convert any expression to a string.

Syntax
STRING I exp)

exp Any expression.

Return Type & Value

STRING Returns exp formatted as a string.

Remarks
This function is immensely useful anytime you need to convert any expression to string format.
For example, to append an integer value to the end of a string without this function. you would
need to assign the integer to a string and then append the temporary string to actual string.
This is because PPL's normal course of action when perfonning arithmetic with incompatible
types is to convert everything to integer first. With this function, you can accomplish the same
function in one line of code with one expression because you are forcing addition of
compatible types (strings). Note that PPL does automatically convert incompatible types
whenever possible, making this function unnecessary in many cases. This function should
only be necessary when trying to append the text representation of a non•string type to a string
via the + operator.

Examples

INTEGER i
STRING s(SI
FORi:ltoS

LET s(i) : "This is string -+S'l'RIIIG(i)
NEXT

STRING s
LET s = S'l'RIIIG(ABOR'l'())+" -+S'l'RIIIG(DA'l'B())+" "+S'l'RIHG(10)+"
LET s: s+S'l'RIIIG($10.00)+" "+S'l'RIIIG('l'IIIB())
PRINTLN s • will print -o 10-31-67 10 $10.00 03:27:00" (or similar)

See Also

INSTRO Function, LENO Function, SCRTEXTO Function, SPACEO Function

Tire PPL Development Kit :!73

Chapter7 PPL Reference

STRIP() Function

274

Function
Remove all occurrences of a character from a string.

Syntax
STRIP(str,ch)

str Any string expression.

ch String with character to remove from str.

Return Type & Value

STRING Returns sir without occurrences of ch that may have been present
previously.

Remarks
This function is used to strip a selected character from a string. This can be useful when you
need to remove known fonnatting characters from a string, such as slashes and hyphens from
a date string.

Examples

STRING s
WHILE (LEN(s) < 6) DO

INPUTSTR "Enter date (MM-DD-YY) ", s,@XOE, 8, "0123456789-", DEFS
LET s = B'l"ltJ:•(a,•-•)

ENDWHILE
PRINTLN "Date (MMODYY): ", s

See Also

REPLACEO Function, STRIPATXO Function

T/te PPL Development Kil

PPL Reference Chapter7

STRIPATX() Function

Function
Remove @X codes from a string.

Syntax
STRIPATX (sexp I

sexp Any string expression.

Return Type & Value

STRING Returns sexp without any @X codes that may have been present
previously.

Remarks
This function is used to strip PCBoard @X color codes from a string or string expression.
This is useful when you want to log information to a file without the @X codes used in the
screen display.

Examples

STRING Question, Answer
LET Question = •What is your street address
GOSUB ask
END
:ask Sub to ask a question, get an answer, and log them to a file
LET Answer = • "
PRINTLN "@XOE• ,Question
INPUT " •• Answer
NEWLINES 2
FPUTLN 0,"Q: ",S'l'RJ:PA'rX(Qu.e■tiom.)
FPUTLN 0, "A: ",Answer
RETURN

See Also
REPLACEO Function, STRIPO Function

The PPL Development Kit 175

Chapter7 PPL Reference

SYSOPSEC() Function

276

Function
Get the security level as the SysOp security level.

Syntax
SYSOPSEC ()

No arguments are required

Return Type & Value

INTEGER Returns the SysOp security level as defined in PCBSetup.

Remarks
This function is useful for those occasions when you need to limit functionality in your PPL
applications to users having a security level greater than or equal to the defined SysOp security
level in PCBSetup.

Examples

INTEGER min
IF (CURSEC{) >= SYSOPSBCI)) THEN

LET min = 60
ELSE

LET min = 5
ENDIF
ADJTIME min
PRINTLN ·Your time available has been increased by ",min,· minutes·

See Also
CURSECO Function

The PPL Development Kil

PPL Reference Chapter7

S_DB Constant

Function
Set the share deny both (read and write) flag in a FCREATE/FOPENIFAPPEND statement.

Value
3 = I lb= Jo= Jh

Remarks
DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode
of file sharing should be allowed. This constant allows you to specify that other processes may
not open the same file for either read or write access from the time you open the file to the
time you close the file. This is useful when you need exclusive access to a file for any reason
and need to restrict other processes access to the same file.

Examples

FOPEN 1, "FILE.DAT" ,O_RD,S_DB ' Deny other processes all access
FOR i = 1 TO 10

FGET l,s
PRINTLN s

NEXT
FCLOSE 1 · Close the file and allow others to open it in any mode

See Also
S_DN Const11nt, S_DR Constant, S_DW Constant

The PPL Development Kit 27"!

Chapter 7 PPL Reference

278

S_DN Constant

Function
Set the share deny none flag in a FCREATEIFOPEN/FAPPEND statement.

Value
0 -ob-Oo-Oh

Remarks
DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode
of file sharing should be allowed. This constant allows you to specify that other processes may
open the same file for read or write access from the time you open the file to the time you close
the file. This is useful when you don1t need exclusive access to a file for any reason and need
not restrict other processes.

Examples

FOPEN 1, "FILE.DAT' ,O_RD,s_mr ' Do not deny other processes any access
FOR i = l TO 10

FGET 1,s
PRINTLN s

NEXT
FCLOSE 1 ' Close the file and allow others to open it in any mode

See Also
S_DB Constant, S_DR Constant, S_DW Constant

The PPL Development Kit

PPL Reference Chapter 7

S_DR Constant

Function
Set the share deny read flag in a FCREATE/FOPEN/FAPPEND statement.

Value
I= lb= lo= lh

Remarks
DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode
of file sharing should be allowed. This constant allows you to specify that other processes may
open the same file, but that they may not open it for read access, from the time you open the
file to the time you close the file.

Examples

FOPEN 1, "FILE.DAT" ,O_RD,S_DR Deny other processes read access
FOR i : 1 TO 10

FGET l,s
PRINTLN s

NEXT
FCLOSE 1 Close the file and allow others to open it in any mode

See Also
S_DB Constant, S_DN Constant, S_DW Constant

Th• PPL D,v,lop,nent Kit 219

Chapter7 PPL Reference

S_DW Constant

280

Function

Set the share deny write flag in a FCREATE/FOPEN/FAPPEND statement.

Value
2-l0b-2o-2h

Remarks
DOS 3. I or later (which is what is required by PCBoard) allows processes to decide what mode
of file sharing should be allowed. This constant allows you to specify that other processes may
open the same file, but that they may not open it for write access, from the time you open the
file to the time you close the file. This is useful when you want to ensure that data will not
change while you are reading it.

Examples

FOPEN l,"FILE.DAT",O_RD,SJJW' Deny other processes write access
FOR i = 1 TO 10

FGET l,s
PRINTLN s

NEXT
FCLOSE 1 · Close the file and allow others to open it in any mode

See Also
S_DB Constant, S_DN Constant, S_DR Constant

The PPL Development Kit

PPL Reference

TEMPPATH() Function

Function
Return the path to the temporary work directory as defined in PCBSetup.

Syntax
TEMPPATH()

No arguments are required

Return Type & Value

STRING Returns the path of the node temporary work files area.

Remarks

Chapter7

This function will return the path where temporary work files should be created as defined in
PCBSetup. This path is a good place for small temporary files that need not be kept
pennanently since it often points to a RAM drive or other fast local storage.

Examples

INTEGER re
SHELL TRUE, re, "DIR", ">•+'l'BMPPATB() + "TMPDIR"
DISPf'ILE 'l'BNPl'A'1'B(I +"TMPDIR•, DEFS
DELETE TBNHAD () + "TMPDIR"

See Also
HELPPATHO Function, PPEPATHO Function, SLPATHO Function

The PPL Development Kit 181

Chapter 7 PPL Reference

282

TIME Type

Function
Declare one or more variables of type time.

Syntax
TIME var I arr Is[, s [, s I I) [, var I arr Is [, s [, s I I) I

var The name of a variable to declare. Must slarl with a letter [A-ZJ which
may be followed by letters, digits (0-9) or the underscore LJ. May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions
as var are used.

s The size (0-based) of an array variable dimension. Any constant integer
expression is allowed.

Remarks
TIME variables are stored as seconds elapsed since midnight. Valid times are 0 (00:00:00)
through 86399 (23:59:59). It is stored internally as a four byte unsigned long integer. If a
TIME is assigned to or from an INTEGER type then the seconds since midnight (0-86399) is
assigned. If a TIME is assigned to a STRING type then it is automatically convened to the
following format: "HH:MM:SS", where 11H is the two digit hour (00-23), MM is the two digit
minute (00-59), and SS is the two digit second (00-59). If a foreign language is in use that
uses a different time format (for example, "m-1.MM.SS") then that will be taken into account.
If a STRING is assigned to a TIME then PPL will do it's best to convert the string back to the
appropriate time. All other types. when assigned to or from a TIME. will be converted to an
INTEGER first before being assigned to or from the TIME type.

Examples

'l'J:IIK tob. DOW• pageHou.r•(2). llou.rLi■t(2')

See Also
BOOLEAN Type, DATE Type, INTEGER Type, MONEY Type, STRING Type

1'1'e PPL D<velo-nt Kit

PPL Reference

TIME() Function

Function
Get the current time.

Syntax
TIME()

No arguments are required

Return Type & Value

TIME Returns the current time.

Remarks

Chapter7

The time returned is represented internally as the number of seconds elapsed since midnight.
It may be used as is (for display, storage or as an argument to another function or statement) or
assigned to an integer for arithmetic purposes. 00:00:00 (midnight) has a value of 0. 00:00:01
a value of 1, 00:01:00 a value of 60, 01:00:00 a value of 3600, etc, until 23:59:59 which has a
value of 86399.

Examples

PRINTLN "The time is ",'rINB()

See Also
DATEO Function, HOURO Function, MINO Function, MKDATEO Function, SEC()
Function, TIMEAPO Function

The PP/. Development Kit .!83

Chapter7 PPL Reference

TIMEAP() Function

284

Function
Converts a lime value to a 12-hour AM/PM fonnatted string.

Syntax
TIMEAP (texp)

texp Any time expression.

Return Type & Value

STRING Returns a string formatted with the time specified by te:ii:p in a 12-hour
AM/PM format.

Remarks
TIME values are, by default, formatted for military time ("IIB:MM:SS") when displayed or
assigned to a string variable. You may wish to format them in a 12-hour AM/PM format in
some circumstances, however. This function perform the conversion and format the time in
"HH:MM:SS XM" format (HH = hour, MM= minute, SS = second, X = A or P).

Examples

PRINTLN "The current time is •,'l'J:lllllAP('l'IIIB())

See Also
TIMEO Function

The PPL Development Kit

PPL Reference Chapter7

TOKCOUNT() Function

Function
Access the number of tokens pending.

Syntax
TOKCOUNT()

No arguments are required

Return Type & Value

INTEGER Returns the number of tokens available.

Remarks
Parameter passing between PCBoard and PPL applications (and between PPL applications)
and command line parsing is accomplished via tokens. This function wil1 return the number
of tokens available via the GETTOKEN statement and the GETTOKEN0 function. The
value returned by this will be decremented after each token is retrieved until it reaches O (no
more tokens available). The TOKENIZE function will ovenvrite any pending tokens \\ith
new tokens and reinitialize this function to the new number. Finally. the TOKENSTR0
function will clear this function to O and return all tokens in a string with semi-colons
separating individual tokens.

Examples

PRINTLN "There are ",'l'OltCOtDl'l'()," tokens"
WHILE (!l'OKCOON"l'() ;,, 0) PRINTLN GETTOKENll

See Also
GETTOKEN Statement, GETTOKEN0 Function, TOKENIZE Statement, TOKENSTR0
Function

The PPL Development Kit 185

Chapter7 PPL Reference

TOKENIZE Statement

2B6

Function

Split up a string into tokens separated by semi-colons or spaces.

Syntax
TOKENIZE sexp

sexp Any string expression.

Remarks
One of the strongest features of PCBoard is it's ability to take a series of stacked parameters
from a command line and use them all at once instead of requiring the user to navigate a series
of menus and select one option at each step of the way. The TOKENIZE statement is the PPL
equivalent of what PCBoard uses to break a command line into individual commands (tokens).
The number of tokens available may be accessed via the TOKCOUNTO function, and each
token may be accessed, one at a time, by the GETTOKEN slatement and/or the
GETTOKENO function.

Examples

STRING cmdline
INPUT "Command" , cmdline
'l'ODIIZZB cmdlille
PRINTLN "You entered • ,TOKCOUNT()," tokens"
WHILE (TOKCOUNT() > OJ PRINTLN •Token: ",CHR(34),GETTOKEN(),CHR(34)

See Also
GETTOKEN Stotement, GETTOKENO Function, TOKCOUNTO Function,
TOKENSTRO Function

The PPL Development Kh

PPL Reference Chapter7

TOKENSTR() Function

Function
Rebuild and return a previously tokenized string.

Syntax
TOKENSTR()

No arguments are required

Return Type & Value

STRING Returns the rebuilt string that was previously tokenized.

Remarks
One of the strongest features of PCBoard is it's ability to take a series of stacked parameters
from a command line and use them all at once instead of requiring the user to navigate a series
of menus and select one option at each step of the way. The TOKENIZE statement is the PPL
equivalent of what PCBoard uses to break a command line into individual commands (tokens).
This function will take all pending tokens and build a string with appropriate token separators.
For example, the string "RA$" would be broken into three separate tokens; "R". "A" and "S".
TOKENSTRO would take those tokens and return the follo\\ing string: "R;A:S". Note that.
regardless of the separator used in the original string, the semi<alon character will be used in
the rebuilt string.

Examples

STRING cmdline
INPUT "Command" ,cmdline
TOKENIZE cmdline
PRINTLN "You entered ",TOKCOUNT()," tokens"
PRINTLN •original string: ", cmdline
PRINTLN " TOKENSTR I l : " , TODa'STR ()

See Also
GETTOKEN Stalement, GETTOKENO Function, TOKCOUNTO Function, TOKENIZE
Statement

The PPL Development Kil Zll7

Chapter7 PPL Reference

TRIM() Function

288

Function
Trim a specified character from both ends of a string.

Syntax
TRIM(str,ch)

s tr Any string expression.

ch A string with the character to strip from both ends of str.

Return Type & Value

STRING Returns the trimmed str.

Remarks
A common need in programming is to strip leading and/or trailing spaces (or other
characters). This function will strip a specified character from both ends ofa string and return
the trimmed string.

Examples

STRING s
LET s = " TEST
PRINTLN TRDI(■.• •) ' Will print "TEST"
PRINTLN 'rR:nl(• ••••• DA•+ 11TA , ' Will print "DATA"
PRINTLN ftDI(" ••••• DA"+"TA •••••••• ") ' Will print •..... DATA ••.

See Also
L TRIMO Function, RTRIMO Function

The PPL Development Ku

PPL Reference Chapter7

TRUE Constant

Function
To provide a named constant for the boolean true value in boolean expressions.

Value
1 = lb= lo= lh

Remarks
BOOLEAN logic is based on two values: TRUE (1) and FALSE (0). The literal numeric
constants O and 1 may be used in expressions, or you may use the predefined named constants
TRUE and FALSE. They make for more readable, maintainable code and have no more
overhead than any other constant value at run time.

Examples

BOOLEAN flag
LET flag= DCB
WHILE I! flag) DO

INPUTSTR "Text-, s, liXOE, 60. "ABCDEFGHIJKLMNOPQRSTUVWXY'Z ". OPCASB
PRINTLN s
IF (s = -QUIT" J LET flag = FALSE

ENDWHILE

See Also
DEFS Constont, FALSE Constant

The PPL Development Kit 189

Chapter7 PPL Reference

UN_ ... () Functions

290

Function
Get a piece of infonnation about a node.

Syntax
UN_ ..• ()

No arguments are required
UN_ should be followed by one of the following: CITY, NAME, OPER, or ST AT.

Return Type & Value

STRING Returns a string with the desired piece of information.

Remarks
There are actually four different functions that return infonnation from the USERNET.XXX
file. UN_CITYO will return the city field, UN_NAMEO will return the user name field,
UN_OPER0 will return the operation text field, and UN_STAT0 will return the status field.
The information returned by these functions is only meaningful after executing the RDUNET
statement for a specific node.

Examples

RDUNET PCBNODE (l
WRUNET PCBNODE(l. tJB_8TAT{) 'tJBJIIUIB{) .tJB_C:1'1'1'{). •Running ·+PPENAME(I'."
RDUNET 1
WRUNET l,tJll'_ftA'l'l),tJII_DIIB(),tJB_CJ:'lY(),UII_OUR(),"Hello there node 1•

See Also

BROADCAST Statement, RDUNET Statement, WRUNET Statement

The PPL Dnelopment Ko

PPL Reference Chapter 7

UPCASE Constant

Function
Set the force uppercase flag in an INPUTSTR or PROMPTSTR statement.

Value
8 = IOOOb= !Oo= 8h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to force all input characters
to uppercase. This is useful in getting case insensitive replies from the user. If this flag is
used. you need not pass lowercase valid characters as they will be automatically converted at
runtime. If this flag is not used and you need to input alphabetic characters, you should pass
both lowercase and uppercase characters in the valid character string.

Examples

STRING s
WHILE (s <> "QUIT") DO

INPUTSTR MText M, s, @XOE, 60, "ABCDEFGHIJKLMNOPQRSTUVWXYZ ", tJPCASB
PRINTLN s

BNDWHILE

See Also
INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kil

Chapter7 PPL Reference

UPPER() Function

292

Function
Convens lowercase characters in a string to uppercase.

Syntax
UPPER (sexp)

sexp Any string expression.

Return Type & Value

STRING Returns sexp with all lowercase characters converted to uppercase.

Remarks
Although "STRING" is technically different from "string" (ie, the computer doesn't recognize
them as being the same because one is uppercase and the other is lowercase), it is often
necessary to save, display or compare information in a case insensitive format. This function
will return a string with all lowercase characters converted to uppercase. So, using the above
example. UPPER("string") would return "STRING".

Examples

STRING s
WHILE (tJ'PPBR(a) <> ~QUIT") DO

INPUT "Text•, s
PRINTLN LOWER (s J

ENDWHILE

See Also
LOWER0 Function

The PPL Development Kit

PPL Reference Chapter 7

U_ADDR() VARIABLE ARRAY

Function
Allow reading and writing of the current users address information.

Type & Value

STRING
Subscript O Address Line I (50 characters max).

Subscript I Address Line 2 (50 characters max).

Subscript 2 City (25 characters max).

Subscript 3 State (10 characters max).

Subscript 4 ZIP Code (IO characters max).

Subscript 5 Country (15 characters max).

Remarks
This array is filled with infonnation from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that the array is empty until a GETUSER statement is processed
and that changes are not written until a PUTUSER statement is processed. Additionally. the
array will only have meaningful infonnation if the address PSA is installed. The existence of
the address PSA may be checked with the PSAO function.

Examples

IF (PSA())) THEN
GETUSER
INPUT "Addr 1", U_ADDR(O)
INPUT "Addr 2" , U'JJ)DR (11
INPUT "City ",U_AJ)DR(2)
INPUT "State -,u_ADDR(J)
INPUT "ZIP - , tJ_ADDR(&)
INPUT "Cntry ff' tJ_ADDll(S)
PUTUSER

ENDIF

See Also
GETUSER Statement, PSAO Function, PUTUSER Statement

The PPL Development Kit

Chapter 7 PPL Relerance

294

U_ALIAS VARIABLE

Function
Allow reading and writing of the current users alias.

Type& Value

STRING The current users alias (25 characters max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. Additionally, it will
only have meaningful information if the alias PSA is installed. The existence of the alias PSA
may be checked with the PSAO function.

Examples
IF (PSA(l) J THEN

GETUSER
PRINTLN "Your alias is ~, 'D'_AL:CAS

ELSE
PRINTLN "Your name is ",U_NAME(l

ENDIF

See Also
GETUSER Stalement, PSAO Function, PUTUSER Stalement

The PPL Development Kit

PPL Reference Chapter 7

U_BDL() Function

Function
Access the total number of bytes downloaded by the current user.

Syntax
U_BDL()

No arguments are required

Return Type & Value

INTEGER Returns the current users total bytes downloaded.

Remarks
This function will return information that can be useful in modifying PCBoard's built in ratio
management system and the view user information command. Of course, it is not limited to
that; anywhere you need to know how many bytes the current user has downJoaded. this
function will provide that information. Unlike the predefined U_ ... user variables. this
function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed 0 ,U_BUL(l," bytes and DLed ",U'_BDL(l," bytes."

See Also

U_BDLDAYO Function, U_BULO Function, U_FDLQ Function, U_FULO Function

111, PPL Development Kil :!95

Chapter7 PPL Reference

U_BDLDAV() Function

296

Function

Access the number of bytes downloaded by the current user today.

Syntax
U_BDLDAY()

No arguments are required

Return Type & Value

INTEGER Returns the current users bytes downloaded today.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio
management system and the view user information command. Of course, it is not limited to
that; anywhere you need to know how many bytes the current user has downloaded today, this
function will provide that information. Unlike the predefined U _... user variables, this
function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have downloaded •, U'__BDLDA.Y(), " bytes today, "

See Also

U_BDLQ Function, U_BULO Function, U_FDLO Function, U_FULQ Function

The PPL Development Kit

PPL Reference Chapter 7

U_BDPHONE VARIABLE

Function
Allow reading and writing of the current users business/data phone number.

Type& Value

STRING The current users business/data phone number (13 characters max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples
GBTUSER
PRINTLN • Home/Voice Phone Nwnber: ". U_HVPHONE
PRINTLN •Business/Data Phone Nwnber: ",U'_BDPBOIIB

See Also
GETUSER Statement, PUTUSER Statement, U _HVPHONE Variable

The PPL Development Kil

Chapter7 PPL Reference

U_BUL() Function

298

Function

Access the total number of bytes uploaded by the current user.

Syntax
U_BUL()

No arguments are required

Return Type & Value

INTEGER Returns the current users total bytes uploaded.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio
management system and the view user information command. Of course, it is not limited to
that anywhere you need to know how many bytes the current user has uploaded, this function
will provide that information. Unlike the predefined U _ ... user variables, this function does
not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed ",'O'_BUL()," bytes and DLed ",U_BDL()," bytes."

See Also

U_BDLO Function, U_BDLDAYO Function, U_FDLO Function, U_FULO Function

The PPL Development Kit

PPL Reference Chapter 7

U_CITY VARIABLE

Function
Allow reading and writing of the current users city information.

Type & Value

STRING The current users city information (24 characters max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record '"ith the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. Note that this
information is separate from the address PSA and does not require that the address PSA be
installed.

Examples
GETUSER
LET 1J CITY " •Timbuktu"
PRINTLN •You are now from Timbuktu! :) •
PUTUSER

See Also
GETUSER Statement, PUTUSER Statement

The PP/. Dew!lopment Kil 199

Chapter 7 PPL Reference

30/J

U_CLS VARIABLE

Function

Allow reading and writing of the current users message clear screen flag.

Type & Value

BOOLEAN The current users clear screen flag status (TRUE or FALSE).

Remarks
This BOOLEAN is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record \\ith the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Turning on the message clear screen flag.
LET U_CLS = TRUE
PUTUSER

See Also
GETUSER Statement, PUTUSER Statement, U_LONGHDR Variable, U_SCROLL
Variable

The PPL Develllpment Kit

PPL Reference Chapter 7

U_CMNT1 VARIABLE

Function
Allow reading and writing of the current users comment field.

Type & Value

STRING

Remarks

The current users comment field (30 characters max).

This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. Note that this
infonnation is separate from the notes PSA (though similar) and does not require that the
notes PSA be installed.

Examples

GETUSER
PRINTLN " User Comment: "' u_CMIITl
PRINTLN "SysOp Comment: ", U_CMNT2

See Also
GETUSER Statement, PVTVSERStatement, U_CMNT2 Variable

The PPL Development Kil 301

Chapter 7 PPL Reference

302

U_CMNT2 VARIABLE

Function
Allow reading and writing of the current users SysOp comment field.

Type& Value

STRING The current users SysOp comment field (30 characters max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.. Note that this
information is separate from the notes PSA (though similar) and does not require that the
notes PSA be installed.

Examples

GETUSER
PRINTLN " User Comment: - , U_CMNTl
PRINTLN "SysOp Comment : n , O_Cllllr.l'2

See Also
GETUSER Statement, PUTUSER Statement, U_CMNTI Variable

The PPL Development Kit

PPL Reference Chapter 7

U_DEF79 VARIABLE

Function
Allow reading and writing of the current users message editor default width flag.

Type&Value

BOOLEAN The current users default editor width flag status (TRUE or FALSE).

Remarks
This BOOLEAN is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN -Turning on the wide message editor flag.
LET U_J>BP79 "' TRUE
PUTUSER

See Also
GETUSER Statement, PUTUSER Statement, U _FSE Variable, U _FSEP Variable

The PPL Development Kit 303

Chapter 7 PPL Reference

304

U_EXPDATE VARIABLE

Function
Allow reading and writing of the current users subscription expiration date.

Type& Value

DATE

Remarks

The current users subscription expiration date.

This DATE is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Your subscription will expire on ", tJ'_BDt>AD

See Also
GETUSER Statement, PUTUSER Statement, U_EXPSEC Variable

The PPL Development Kil

PPL Reference Chapter 7

U_EXPERT VARIABLE

Function

Allow reading and writing of the current users expert status flag.

Type & Value

BOOLEAN

Remarks

The current users expert flag status (TRUE or FALSE).

This BOOLEAN is set with infonnation from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Turning off expert mode.
LET tJ_BX.BR'l' "' FALSE
PUTUSER

See Also
GETUSER Statement, PUTUSER Statement

The PPL Development Kil 305

Chapter 7 PPL Reference

306

U_EXPSEC VARIABLE

Function
Allow reading and writing of the current users expired security level.

Type& Value

INTEGER The current users security level (0 - 255).

Remarks
This INTEGER is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Your securii.:y after subscription expiration will be ", U'_SBC:

See Also
CURS ECO Function, GETUSER Statemenr, PUTUSER Statement, U _ EXPDATE
Variable, U_SEC Variable

The PPL Development Kit

PPL Reference Chapter 7

U_FDL() Function

Function

Access the total number of files downloaded by the current user.

Syntax
U_FDL()

No arguments are required

Return Type & Value

INTEGER Returns the current users total files downloaded.

Remarks
This function will return information that can be useful in modifying PCBoard's built in ratio
management system and the view user information command. Of course, it is not limited to
that; anywhere you need to know how many files the current user has downloaded. this
function will provide that information. Unlike the predefined U_ ... user variables. this
function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed -,u_FUL(J.· bytes and DLed •,o_PDL()," files."

See Also

U_BDLO Function, U_BDLDAYO Function, U_BULO Function, U_FULO Function

The PPL Development Kit 30"

Chapter 7 PPL Reference

308

U_FSE VARIABLE

Function
Allow reading and writing of the ClJITODt users full screen editor default flag.

Type&Value

BOOLEAN The current users full screen editor default flag status (TRUE or FALSE).

Remarks
This BOOLEAN is set with information from the C1JITODt users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Turning on full screen editor as default ... -
LET U'_FSB = TRUE
PUTUSER

See Also
GETUSERStatement, PUTUSERStatement, U_DEF79 Variable, U_FSEP Variable

The PPL Development Kit

PPL Reference Chapter 7

U_FSEP VARIABLE

Function
Allow reading and writing of the current users full screen editor prompt flag.

Type & Value

BOOLEAN The c,ment users full screen editor prompt flag status (TRUE or FALSE).

Remarks
This BOOLEAN is set with information from the current users record when the GETUSER
statement is executed.. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN RTurning off full screen editor prompting ... R
LET U'_FSBP = FALSE
PUTUSER

See Also
GETUSERStat,m,nt, PUTUSER Stat,m,nt, U_DEF79 Variabl,, U_FSE Variable

The PPL Development Kil 309

Chapter7 PPL Reference

U_FUL() Function

310

Function
Access the total number of files uploaded by the current user.

Syntax
U_FUL()

No arguments are required

Return Type & Value

INTEGER Returns the current users total files uploaded.

Remarks
This function will return information that can be useful in modifying PCBoard's built in ratio
management system and the view user information command. Of course, it is not limited to
that; anywhere you need to know how many files the cwrent user has uploaded, this function
will provide that information. Unlike the predefined U _ ••. user variables, this function does
not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed ",U'_l'DL()," bytes and DLed ",U_FDL()," files.•

See Also
U_BDLO Function, U_BDLDAYO Function, U_BULQ Function, U_FDLQ Function

Th• PPL Dev,/opm,nt Kit

PPL Reference Chapter 7

U_HVPHONE VARIABLE

Function
Allow reading and writing of the current users home/voice phone number.

Type& Value

STRING

Remarks

The current users home/voice phone number (13 characters max).

This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN • Home/Voice Phone Number: ". tJ'__KVPBOD
PRINTLN "Business/Data Phone Number: ". U_BDPHONE

See Also
GETUSER Statement, PUTUSERStatement, U_BDPHONE Variable

The PPL » .. etopment Kit 311

Chapter7 PPL Reference

U_INCONF() Function

312

Function
Detennine if a user is registered in a conference.

Syntax
U_INCONF (rec, conf)

rec An integer expression with the record number of the user to check.

con£ An integer expression with the conference number to check.

Return Type & Value

BOOLEAN Returns TRUE if the user is registered in the specified conference, FALSE
otherwise.

Remarks
It is sometimes necessary to know if a user is registered in a conference (for example, when
entering a message to a particular user). This function will return TRUE if the user is
registered in the conference specified. Before calling this function you need to find the users
record number from the USERS file with the U_RECNUMO function.

Examples

INTEGER i, rec
STRING un,ynStr(lJ
LET ynStr(0) = "NO"
LET ynStr(l) = "YES"
INPUT ·user name" ,un
NEWLINE
LET rec = U_RECNUM(un)
FOR i = l TO 10

PRINTLN un,• in conf •,i,": ",ynStr(U'_J:HCOIIP(i,rec))
NEXT

See Also

U_RECNUMQ Function

The PPL Dwelopment Kit

PPL Reference

U_LDATE() Function

Function

Access the last log on date of a user.

Syntax
U_LDATE()

No arguments are required

Return Type & Value

DATE Returns the current users last log on date.

Remarks

Chapter 7

PCBoard tracks the last log on date for each user. This function will return that date lbr the
user currently online. Unlike the predefined U_ ... user variables. this function docs not require.
the use of GETUSER to return valid infonnation.

Examples

PRINTLN "You last logged on •,tJ'_LDA'l'BI),"

See Also
U_LDIRO Function, U_LTIMEO Function

The PPL Development Kit 313

Chapter7 PPL Reference

U_LDIR() Function

314

Function
Access the latest file date found in a file scan by a user.

Syntax
U_LDIR()

No arguments are required

Return Type & Value

DATE Returns the latest file date found by the current user.

Remarks
PCBoard tracks the latest file found by each user. This function will return that date for the
user currently online. Unlike the predefined U _ •.• user variables, this function does not require
the use of GETUSER to return valid infonnation.

Examples

PRINTLN "Latest file found was dated "' U_LDIR(),

See Also
U_LDATEQ Function, U_LTIMEQ Function

The PPL Development Kil

PPL Reference

U_LOGONS() Function

Function
Access the total number of system logons by the current user.

Syntax
U_LOGONS{)

No arguments are required

Return Type & Value

INTEGER Returns the current users total system logons.

Remarks

Chapter 7

PCBoard tracks the total number of logons for each user. This function will return that
number for the user currently online. Unlike the predefined U_ •.. user variables. this function
does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have logged on to @BOARDNAME@ "' U_LOGOIIIS () . " ti:nes. "

See Also
CALLNUMO Function, LOGGEDONO Function, ONLOCALO Function

The PP/. Development Kit 315

Chapter 7 PPL Reference

316

U_LONGHDR VARIABLE

Function

Allow reading and writing of the current users long message header flag.

Type & Value

BOOLEAN The current users long message header flag status (TRUE or FALSE).

Remarks
This BOOLEAN is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and wriuen back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Turning on long message headers.
LET U_LONGIIDR = TRUE
PUTUSER

See Also
GETUSERStatement, PUTUSERStatement, U_CLS Variable, U_SCROLL Variable

The PPL Development Kit

PPL Reference

U_L TIME() Function

Function

Access the time of day that a user last logged on.

Syntax
U_LTIME()

No arguments are required

Return Type & Value

TIME Returns the time of day of the current users last log on.

Remarks

Chapter 7

PCBoard tracks the last time of day of the last log on for each user. This function will return
that time for the user currently online. Unlike the predefined U _... user variables. this
function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You last logged on at ", U'_L'l'IIIB().

See Also

U_LDATEO Function, U_LDIRO Function

The PPL Development Kit 317

Chapter7 PPL Reference

U_MSGRD() Function

318

Function
Access the total number of messages read by the current user.

Syntax
tJ_MSGRD()

No arguments are required

Return Type & Value

INTEGER Returns the current users total messages read.

Remarks
PCBoard tracks the total number of messages read by each user. This function will return that
number for the user currently online. One quick idea for use: a message/file ratio
enforcement door. Unlike the predefined U_ ••• user variables, this function does not require
the use of GETUSER to return valid information.

Examples

IF ((tJ'_IISCDm()+UJISGWR{))/U_FDL() > 10) THEN
PRINTLN ·You need to do more messaging! ! ! "
END

ENDIF

See Also

U_MSGWRO Function

The PPL Development Kit

PPL Reference

U_MSGWR() Function

Function
Access the total number of messages written by the current user.

Syntax
U_MSGWR()

No arguments are required

Return Type & Value

INTEGER Returns the current users total messages written.

Remarks

Chapter7

PCBoard tracks the total number of messages written by each user. This function will return
that number for the user currently online. One quick idea for use: a message/file ratio
enforcement door. Unlike the predefined u_ ... user variables, this function does not require
the use of GETUSER to return valid information.

Examples

IF ((U_MSGRD(l+U_IISQD.(}J/U_FOL() > 10) THEN
PRINTLN "You need to do more messaging!!!"
END

ENDIF

See Also

U_MSGRDO Function

The PPL Development Kil 319

Chapter7 PPLRelerance

U_NAME() Function

320

Function
Access the current users name.

Syntax
tl_NAME()

No arguments are required

Return Type & Value

STRING Returns a string with the current users name.

Remarks
Perhaps the most important piece of information about a caller is his name. The user name
differentiates a user from every other user on the BBS and can be used to track PPE user
information that must be kept separate from all other users information. Unlike the predefined
U _ ••• user variables, this function does not require the use of GETUSER to return valid
information.

Examples

IF (tJ_IIAIIB() = "JOHN DOE•) THEN
PRINTLN "I know who you are! Welcome!"
GETUSER
LET U_SEC = 110
PUTUSER
PRINTLN "Automatically upgraded!"

ENDIF

See Also

CURCONF0 Function, MESSAGE Stat,,,,,,,.t

The PPL Developm,Jtt Kit

PPL Reference Chapter 7

U_NOTES() VARIABLE ARRAY

Function
Allow reading and writing of current user notes.

Type& Value
STRING

Subscript 0-4 SysOp defineable user notes (60 characters max).

Remarks
This array is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that the array is empty until a GETUSER statement is processed
and that changes are not written until a PUTUSER statement is processed. Additionally. the
anay will only have meaningful information if the notes PSA is installed. The existence of the
notes PSA may be checked with the PSAO function.

Examples
INTEGER i
IF (PSA(6) J THEN

GETUSER
FORi=0TO4

PRINTLN "Note ",i+l,": ",O_IIO'l'JIS(i)
NEXT

ENDIF

See Also
GETUSER State-nt, PSAQ Functwn, PUTUSER Statement

The PPL Development Kit 321

Chapter 7 PPL Reference

322

U_PAGELEN VARIABLE

Function
Allow reading and writing of the CIJITODt users page length setting.

Type&Value

INTEGER The current users page length (0 - 255).

Remarks
This integer is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN •Your page length was •, t1_•MBLD1
LET 'D'JAGBLD == 20
PRINTLN •Your page length is now ", V_PAGBLIDI
PUTUSER

See Also
GETUSER Staument, PUTUSER Stfllement

The PPL De,,e/opmmt Kit

PPL Reference Chapter 7

U_PWD VARIABLE

Function
Allow reading and writing of the current users password.

Type&Value

STRING The current users password (12 characters max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. A mask of valid
characters that may be used in the U_PWD variable is available via the MASK_PWD
function.

Examples

STRING s
INPUT "Enter Password", s,@XOE, 12,MASK_PWD(l .UPCASE
GETUSER
IF (s <> U'_PIID) THEN

PRINTLN •sorry, hanging up"
HANGUP

BNDIF

See Also
GETUSER Statement, MASK_PWDO Function, NEWPWD Statement, PUTUSER
Staument, U PWDEXP Variable, U PWDHISTO Function, U PWDLCO Function,
U_PWDTCO Function - -

Tl,e PPL Dnelopmmt Kil 3!3

Chapter 7 PPL Reference

324

U_PWDEXP VARIABLE

Function
Allow reading and writing of the current users password expiration date.

Type& Value

DATE The current users password expiration date.

Remarks
This DATE is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. Additionally, it will
only have meaningful information if the password PSA is installed. The existence of the
password PSA may be checked with the PSAO function.

Examples

IF IPSAl41 l THEN
GETUSER
PRINTLN tJ_IIWDBXP-DATE(l, • until current password expiration"
LET O_.wl>BX. = DATE I J + 3 0
PRINTLN "'iou now have 30 days until you *MUST* change you password."
PUTUSER

ENDIF

See Also
GETUSER Statement, NEWPWD Statement, PSAO Function, PUTUSER Statement,
U_PWD Variable, U_PWDHISTO Function, U_PWDLCO Function, U_PWDTCO
Function

The PPL Dnelopment Kit

PPL Reference Chepter7

U_PWDHIST() Function

Function
Access the last three passwords used by the current user.

Syntax
U_PWDHIST (num)

num The number of the password from the history to return (I through 3).

Return Type & Value

STRING

Remarks

Returns the specified password from the history (1 for the most recent, 3
for the least recent).

PCBoard has the ability to track the last three passwords used by each user. This function "ill
return one of those passwords from the history for the user currently online. Unlike the
predefined U_ ... user variables. this function does not require the use of GETUSER to return
valid infonnation. However. it does require that the password PSA has been installed to return
meaningful infonnation. The existence of the password PSA may be checked ,ia the PSAO
function.

Examples

INTEGER i
IF {PSA{4) I THEN

F0Ri=lT03
PRINTLN "Password history ", i,": ", u_PWDlll:ff(i)

NEXT
ENDIF

See Also
NEWPWD Statement, PSAO Function, U_PWD Variable, U_PWDEXP f ·ariable,
U_PWDLCO Functum, U_PWDTCO Function

Tlr, PPL lhve/opment Kil

Chapter7 PPL Reference

U_PWDLC() Function

326

Function
Access the last date the user changed his password.

Syntax
U_PWDLC()

No arguments are required

Return Type & Value

DATE Returns the last date the user changed his password.

Remarks
PCBoard has the ability to track the last date of a password change for each user. This
function will return that date for the user currently online. Unlike the predefined U _ ••• user
variables. this function does not require the use of GETUSER to return valid infonnation.
However. it does require that the password PSA has been installed to return meaningful
infonnation. The existence of the password PSA may be checked via the PSAO function.

Examples

IF (PSA(4)) PRINTLN ~You last changed your password on ",D_.wJILC(),"."

See Also
NEWPWD Statement, PSAO Fundum, U_PWD Variable, U_PWDEXP Variable,
U_PWDHISTO Function, U_PWDTCO Fundum

The PPL Development Kit

PPL Reference

U_PWDTC() Function

Function
Access the number of times the user has changed his password.

Syntax
U_PWDTC()

No arguments are required

Return Type & Value

Chapter7

INTEGER Returns the number of times the user has changed his password.

Remarks
PCBoard has the ability to track the total number of times each user changes his password.
This function will return that count for the user currently online. Unlike the predefined U_ ...
user variables, this function does not require the use of GETUSER to return valid
information. However, it does require that the password PSA has been installed to return
meaningful information. The existence of the password PSA may be checked via the PSAO
function.

Examples

IF (PSA(4) I THEN
PRINTLN "You have changed your password ", 'D'_l"WD'l'C()," times."

ENDIF

See Also
NEWPWD Statement, PSAO Function, U_PWD Variable, U_PWDEXP Variable,
U_PWDHISTO Function, U_PWDLCO Function

The PPL Development Kit

Chapter7 PPLRBlarance

U_RECNUM() Function

328

Function
Detennine if a user is registered on the system and what the record number is.

Syntax
U_RECNUM (user)

user A string expression with the user name to search for.

Return Type & Value

INTEGER Returns the record number of the user in the USERS file if found or -1 if
not found.

Remarks
This function serves two purposes. The first is to determine whether or not a given user name
is registered on the system. If the value -1 is returned the user isn't in the user files. The
second use is to get the users record number for the U_INCONF0 function to determine
whether or not a user is registered in a given conference.

Examples
INTEGER i' rec
STRING un,ynStrtl)
LET ynStr(O) = "NO•
LET ynStr(l) = "YES"
INPUT "User name• , un
NEWLINE
LET rec = 'O'_Jlm(un)
FOR i = 1 TO 10

PRINTLN un," in conf ",i,": ",ynStr(U_INCONF{i,recJ)
NEXT

See Also
U_INCONF0 Function

The PPL Development Kil

PPL Reference Chapter 7

U_SCROLL VARIABLE

Function
Allow reading and writing of the current users multi-screen message scroll flag.

Type&Value

BOOLEAN

Remarks

The current users scroll flag status (TRUE or FALSE).

This BOOLEAN is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and v,'ritten back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN •Turning off message scrolling.
LET V_BCP.OLL = FALSE
PUTUSER

See Also
GETUSERStatement,PUTUSERStatement, U_CLS Variable, U_LONGHDR Variable

Tire PPL Development Kit 319

Chapter 7 PPL Reference

330

U_SEC VARIABLE

Function
Allow reading and writing of the current users security level.

Type&Value

INTEGER The current users security level (0 - 255).

Remarks
This INTEGER is set with infonnation ftom the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN MRaising your security to level 20 ... M

LET tJ'_SBC = 20
PUTUSER
PRINTLN "Automatic upgrade complete!"

See Also
CURSECO Function, GETUSER Statement, PUTUSER Statement, U_EXPSEC Variable

Tire PPL Development Kit

PPL Reference Chapter7

U_STAT() Function

Function
Access a statistic about the current user.

Syntax
U_STAT(stat)

stat The statistic to retrieve (1 through 15).

Return Type & Value

DATE

INTEGER

2

4

5

6

7

8

10

11

12

13

14

15

The PPL De,,e/opment Kit

Returns the first date the user called the system if stat is 1.

Returns one of the following for all other values of stat:

The number of times the user has paged the Sys()p;

The number of group chats the user has participated in;

The number of comments left by the user;

The number of 300 bps connects by the user;

The number of 1200 bps connects by the user;

The number of 2400 bps connects by the user;

The number of connects by the user greater than 2400 bps and less than or
equal to 9600 bps (9600 bps>= connect speed> 2400 bps);

The number of connects by the user greater than 9600 bps and less than or
equal to 14,400 bps (14,400 bps>= connect speed> 9600 bps);

The number of security violations by the user;

The number of 11not registered in conference" warnings to the user:

The number of times the user's download limit has been reached;

The number of "file not found" warnings to the user;

The number of password errors to access the user's account:

The number of verify errors to access the user's account.

331

Chapter7

332

PPL Reference

Remarks
PCBoard has the ability to track a number of statistics about the user. This function will
return the desired statistic for the user currently online. Unlike the predefined U _ ... user
variables, this function does not require the use of GETUSER to return valid information.
However, it does require that the statistics PSA has been installed to return meaningful
information. The existence of the statistics PSA may be checked via the PSAO function.

Examples

STRING label
INTEGER i
FOPEN 1, PPEPATH() +"STATTEXT" ,O_RD, S_DN
FOR i = 1 TO 15

FGET !,label
PRINTLN label," - ",tJ_B'l'A'l'(i)

NEXT
FCLOSE 1

See Also
PSAO Function

The PPL Dndoplflffft Kil

PPL Reference

U_ TIMEON() Function

Function
Access the users time online today in minutes.

Syntax
U_TIMEON(I

No arguments are required

Return Type & Value

INTEGER Returns the users time online today in minutes.

Remarks

Chapter 7

PCBoard tracks the users time online each day. This function will return the elapsed time for
the user currently online. Unlike the predefined U_ •.. user variables. this function does not
require the use of GETUSER to return valid information.

Examples

PRINTLN "You have been online for ~, U_'l'IMBONI)," total minutes toda:,.·.'

See Also
ADJTIME Statement, MINLEFT0 Function, MINONQ Function

The PPL Development KiJ 333

Chapter 7 PPL Reference

334

U_TRANS VARIABLE

Function
Allow reading and writing of the cunent users default transfer protocol letter.

Type&Value

STRING The current users default transfer protocol letter (I character max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. Valid characters that
may be used in the U_ TRANS variable are A through Z and O through 9.

Examples

GETUSER
PRINTLN "Your default file transfer protocol letter is ", U'_TUIIS
LET U_'l'RAIIS = "N" · Set to no default protocol
PRINTLN "Default file transfer protocol letter set to None"
PUTUSER

See Also
GETUSER StaJement, PUTUSER StaJement

The PPL Development Kit

PPL Reference Chapter 7

U_VER VARIABLE

Function
Allow reading and writing of the current users verification string.

Type&Value

STRING The current users verification string (25 characters max).

Remarks
This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the
PUTUSER statement. Note that it is empty until a GETUSER statement is processed and
that changes are not written until a PUTUSER statement is processed. Additionally, it will
only have meaningful infonnation if the verification PSA is installed.. The existence of the
verification PSA may be checked with the PSAO function.

Examples

STRING s
IF (PSA(2) I THEN

GETUSER
PRINTLN "Enter verification information"
INPUT ~•,s
IF (s <> O_VIIR) HANGUP

ELSE
PRINTLN •No verification information available"

ENDIF

See Also
GETUSER Statanent, PSAO F11nction, PUTUSER Statement

The PPL Development Kit 335

Chapter7 PPL Reference

VALCC() Function

336

Function
Tests a string for credit card number format validity.

Syntax
VALCC (sexp)

sexp Any string expression.

Return Type & Value

BOOLEAN Returns TRUE if the string is a valid credit card number format, FALSE
othenvise.

Remarks
This function will take a string and attempt to identify it as a credit card number. If the
number is invalid for any reason (insufficient digits or bad checksum, primarily) then this
function will return FALSE, otherwise it will return TRUE.

Examples

STRING s
WHILE (!VJU.CC(a) J DO

INPUT ·cc l",S
NEWLINES 2

ENDWHILE
PRINTLN CCTYPE(s),• - •,FMTCC(s)

See Also
CCTYPEO F11nction, FMTCCO F11nction, VALDA TEO F11nction, VAL TIMEO F11nction

The PPL Development Kit

PPL Reference

VALDATE() Function

Function
Tests a string for date format validity.

Syntax
VALDATE(sexp)

sexp Any string expression.

Return Type & Value

Chapter7

BOOLEAN Returns TRUE if the string is a valid date format, FALSE otherwise.

Remarks
PPL does it best to convert incompatible types, as needed, automatically. Converting a
STRING type to a DATE type is particularly problematic because of the virtually unlimited
numbers of strings possible. This function checks to make sure that the hour is from O to 23.
the minute is from O to 59, and the second (optional) is from O to 59. Also, each field
(hours/minutes/seconds) must be separated by a colon. If the string matches these
requirements then the string is considered valid and TRUE is returned. Any other string "ill
result in a FALSE value being returned.

Examples

STRING s
WHILE (!ftL'l'IIIB(B) l DO

INPUT "Time", s
NEWLINES 2

ENDWHILE
TIME t
LETt=s
PRINTLN s," ", t

See Also
V ALCCO Function, VALDA TEO Function

Tlr, PPL Development Kit 337

Chapter7 PPL Reference

VALTIME() Function

338

Function
Tests a string for time fonnat validity.

Syntax
VALTIME (sexp)

sexp Any string expression.

Return Type & Value

BOOLEAN Returns TRUE if the string is a valid time format, FALSE otherwise.

Remarks
PPL does it best to conven incompatible types, as needed, automatically. Converting a
STRING type to a TIME type is particularly problematic because of the vinually unlimited
numbers of strings possible. This function checks to make sure that the hour is from O to 23,
the minute is from O to 59, and the second (optional) is from O to 59. Also, each field
(hours/minutes/seconds) must be separated by a colon. If the string matches these
requirements then the string is considered valid and TRUE is returned. Any other string will
result in a FALSE value being returned.

Examples

STRING s
WHILE (!w.L'l'IIIB(a) I DO

INPU'r "Time" , s
NEWLINES 2

ENDWHILE
TIME t
LETt=s
PRINTLN s, - - , t

See Also

V ALCCO Function, VALDA TEO Function

Tire PPL Dev,lopment Kit

PPL Reference Chapter7

VARADDR Statement

Function
Sets a variable to the complete address of another variable.

Syntax
VARADDR src, des t

src The variable to get the address of.

des t The variable to store the address in.

Remarks
This statement is primarily useful in conjunction with the DOINTR statement. It may be
necessary to give an interrupt the address of a memory location that can be used to store
information. This statement will allow you to get the address of a specified variable to pass to
the DOINTR statement.

Examples

' create subdirectory - DOS function J9h
INTEGER addr
STRING path
LET path "' "C: \$TMPDIR$"
VMADDa patb.,ad4r
DOINTR 21h, 39h, 0, 0, addrllOOOOh, 0, 0, 0, addr/lOOOOh, 0
IF IREGCF(J & (REGAX() = 3) l THEN

PRINTLN •Error: Path not found·
ELSE IF (REGCF(l & IREGAXII = 5)) THEN

PRINTLN •Error: Access Denied"
ELSE IF (REG CF ()) THEN

PRINTLN •Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created ..
ENDIF

See Also
DOINTR Statement, MKADDRO Function, PEEKB0 Function, PEEKDW0 Function,
PEEKW0 Function, POKEB0 Function, POKEDW0 Function, POKEW(J Function,
V AROFF Statement, V ARSEG Statement

The PPL De,elopment Kit 339

Chapter7 PPL Reference

VAROFF Statement

340

Function
Sets a variable to the offset address of another variable.

Syntax
VAROFF src, dest

src The variable to get the offset address of.

des t The variable to store the offset address in.

Remarks
This statement is primarily useful in conjunction with the DOINTR statement. It may be
necessary to give an interrupt the address of a memory location that can be used to store
infonnation. This statement will allow you to get the offset address of a specified variable to
pass to the DOINTR statement.

Examples

Create subdirectory - DOS function 39h
INTEGER saddr, oaddr
STRING path
LET path= "C:\$TMPDIR$•
VARSEG path. saddr
VAllOFI" path, oadd.r
DOINTR 21h, 39h, 0, 0 ,oaddr. O, O, O, saddr, 0
IF (REGCF() & (REGAX() = 3)) THEN

PRINTLN "Error: Path not found•
ELSE IF (REGCF () & (REGAX () = 5 J) THEN

PRINTLN "Error: Access Denied"
ELSE IF (REGCF () l THEN

PRINTLN "Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created ... ft

ENOIF

See Also
DOINTR Statement, MKADDR0 Function, PEEKB0 Function, PEEKDW0 Function,
PEEKW0 Function, POKEB0 Function, POKEDW0 Function, POKEW0 Function,
V ARADDR Statement, VARSEG Statement

The PPL Development Kit

PPL Reference Chapter7

VARSEG Statement

Function
Sets a variable to the segment address of another variable.

Syntax
VARSEG src, dest

src The variable to get the segment address of.

des t The variable to store the segment address in.

Remarks
This statement is primarily useful in conjunction with the DOINTR statement. It may be
necessary to give an intenupt the address of a memory location that can be used to store
information. This statement will allow you to get the segment address of a specified variable
to pass to the DOINTR statement.

Examples

' Create subdirectory - DOS function 39h
INTEGER saddr. oaddr
STRING path
LET path = ·c: \$THPDIR$"
VARSBO path, aa4d.r
VAROFF path.oaddr
DOINTR 21h, 39h, 0, 0, oaddr, 0, 0, 0, saddr, 0
IF (REGCF() & (REGAX() = JJ) THEN

PRINTLN ·Error: Path not found"
ELSE IF (REGCFII & (REGAX() = 5)) THEN

PRINTLN •Error: Access Denied"
ELSE IF (REGCFI)) THEN

PRINTLN ·Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created.
ENDIF

See Also
DOINTR Statement, MKADDRQ F11nction, PEEKBQ Function, PEEKDW() Function,
PEEKWQ Function, POK.EBO Function, POKEDWO Function, POKEWQ Function.
VARADDR Statement, VAROFF Statement

The PPL Development Kit

Chapter7 PPL Reference

VER() Function

342

Function
Get the version of PPL available.

Syntax
VER()

No arguments are required

Return Type & Value

INTEGER Returns the version number of PPL running.

Remarks
As time passes, new features will be added to PCBoard and PPL. Of course, in order to utilize
the new features, you must be running a version of PCBoard that supports them. This function
will return the version of PCBoard (and PPL). For PCBoard version 15.0 this value will be
1500. In other words, the major version will be accessable via VERQ/100, and the minor
version will be available via VER0%100. Everything documented herein will be available for
all versions greater than or equal to 1500. Future PPL features will be documented with the
required version.

Examples
IF (VBR() < 1600 I THEN

PRINTLN nPCBoard Version 16. 0 required for this PPE file•
END

ENDIF
FOO a,b,c,d,e ' Obviously, this is not a 15.0 statement

See Also
PSAO Function

The PPL Development Kil

PPL Reference

WAIT Statement

Function

Wait for the user to hit ENTER.

Syntax
WAIT

No arguments are required

Remarks

Chapter7

It is often necessary to pause in the display of information and wait for the user to catch up.
This statement allows you to wait for the user to hit ENTER before continuing. It displays
prompt number 418 from the PCBTEXT file for the current language to let the user know
what is expected.

Examples

PRINTLN "Your account has expired!•
PRINTLN "You are about to be logged off" ...,.

See Also
DISPTEXT Statement, INKEYO Function, MORE Stat,ment, PROMPTSTR Statement

Tlte PPL Development Kit

Chapter7 PPL Reference

WAITFOR Statement

344

Function
Wait for a specific string of text to come in from the modem.

Syntax
WAITFOR str, flag, sec

s tr Any string expression.

flag A variable to return the status.

sec An integer expression with the maximum number of seconds to wait.

Remarks
This statement can be used to wait for specific replies to questions, responses from terminal
emulators and modern result codes. If the text that is needed isn't received within the specified
time period, or if there is not a remote caller online, flag will be set to FALSE. If the text is
found, then flag will be TRUE. If a remote caller is online this statement will wait up to the
maximum time for the text and return TRUE or FALSE as appropriate. If the caller is local,
it will immediately return FALSE. Also, the text to wait for is not case sensitive. 11connect 11

will match "CONNECT".

Examples

BOOLEAN flag
KBDCHKOFF
CDCHKOFF
DTROFF
DELAY 18
DTRON
SENDMODEM •ATDT5551212" ' Please don't really dial this number!
WAl'.'l'r0R •CODBCT•, flag, 60
IF (!flag) SPRINLN •No connect found in 60 seconds•
COCHKON
KBDCHKON

See Also

DELAY StaJement, MGETBYTE0 Function, SENDMODEM StaJem,nt

The PPL Deve/o~nt Kit

PPL Reference Chapter7

WHILE/ENDWHILE Statement

Function

Execute one or more statments while a condition is true.

Syntax
WHILE (bexp) statement
-or-
WHILE (bexp) DO

statement (s)
ENDWHLLE

bexp Any boolean expression.

statement Any valid PPL statement.

Remarks
Computers are known for their ability to perform monotonous tasks quickly, efficiently, and
accurately. What better way to implement monotony than through a WHll.E loop? The
WHll.E statement supports two types of loops: logical and block. A logical WHll.E loop is
a single statement; if a condition is TRUE, execute a single statement and check again. A
block WHll.E loop can be one or more statements. The start of a block WHll.E loop is
differentiated from a logical WHll.E loop by the DO keyword immediately after the
condition. At some point in the loop some action must be taken that will make the condition
FALSE. If the condition never changes from TRUE to FALSE you have what is kno"n as an
infinite loop; your computer will appear to be hung, even though it is rapidly executing things
just as fast as it can. Be sure to thoroughly test all programs. but especially programs "ith
loops!

Examples
INTEGER i
LETi=O
WBIL& (i < 10) GOSUB sub
END
:sub
PRINTLN •i is •, i
INC i
RETURN

INTEGER i
LETi=O
WBILS (:l < 10) DO

PRINTLN "i is ",i
INC i , ...

The PPL Development Kit

Chapter7

346

PPL Reference

See Also
GOSUB Stalement, GOTO Stalement, FOR/NEXT Stalement, IF/ELSEIF/ELSE/ENDIF
Statement, RETURN Statement

The PPL Dndo,,,,,ent Kit

PPL Reference Chaptar7

WORDWRAP Constant

Function

Set the word wrap flag in an INPUTSTR or PROMPTSTR statement.

Value
512 = 1000000000b = IOOOo = 200h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to word wrap from one input
statement to the next input statement. If you reach the end of the input field PCBoard \\ill
automatically save the last word from the input field in an internal buffer. The next input
statement will use that saved word if both statements used the WORDWRAP constant. If the
passed variable isn't empty or if an input statement is used that doesn't have the
WORDWRAP flag set then the saved word will not be used.

Examples

STRING s (SI
INTEGER i
CLS
FORi=lTOS

INPUTSTR "Line "+STRING(i) ,s(i) ,@X0E,40.MASK_ASCII (J ,WORDWRAP+NEWLINE
NEXT
CLS
FORi=lTOS

PRINTLN "Line ",i,": ",s(i)
NEXT

See Also
INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit

Chapter7 PPL Reference

WRUNET Statement

348

Function

Write information to the USERNET file for a specific node.

Syntax
WRUNET node, stat, name, city, oper, br

node An integer expression with the node to update.

stat A string expression with the new node status.

name A string expression with the new node user name.

city A string expression with the new node city.

oper A string expression with the new node operation text.

br A string expression with the new node broadcast text.

Remarks
To facilitate intemode communications, a file named USERNET.XXX is maintained with an
entry for each node on the system. This file is used by the BROADCAST command of
PCBoard and to prevent multiple simultaneous logins, among other things. This statement
may be used to change information for the current node (for example, to update operation text
during PPE execution) or other nodes (for example. to broadcast a message).

Examples

RDUNET PCBNODE (I
WRUNE!l' PCBNODB(I ,Ullt_S!l'A!l'{ l ,UII_UKB() ,UII_CJ:'l'Y(,. •aunning ·+PPBRANB(). ■ n
RDUNET 1
WRONE!l' 1,0H_S'l'A'l'(),Ullt_NAME(),OH_CJ:'l'Y(),Ullt_OPBJl(),•Bello there node 1 ■

See Also

BROADCAST Statement, RDUNET Statement, UN_ ... Q Functions

The PPL Development Kit

PPL Reference

WRUSYS Statement

Function
Write a USERS.SYS file out to disk.

Syntax
WRUSYS

No arguments are required

Remarks

Chapter7

Some DOOR applications require a USERS.SYS file to access information about the caller.
This statement allows you to create that file prior to running an application via the SHELL
statement. Should the DOOR make changes to the USERS.SYS file, you should use the
RDUSYS statement after the SHELL to read the changes back into memory. It should be
noted that it is not possible to create the USERS.SYS file with a TPA record with this
statement.

Examples

INTEGER ret
WllUSYS
SHELL FALSE, ret, "MYAPP.EXE",""
RDUSYS

See Also
RDUSYS Statement, SHELL Statement

The PPL Development Kit 349

Chapter7 PPL Reference

XOR() Function

350

Function
Calculate the bitwise XOR (exclusive or) of two integer arguments.

Syntax
AND (iexpl, iexp2)

iexpl

iex:p2

Any integer expression.

Any integer expression.

Return Type & Value

INTEGER

Remarks

Returns the bitwise XOR of iexpl and iesp2.

This function may be used to toggle selected bits in an integer expression by XORing the
expression with a mask that has the bits to toggle set to I and the bits to ignore set to 0.

Examples

· Toggle the bits in the low byte
PRINTLN XOR(12'8h,00Pl'b)

Toggle a flag
INTEGER flag
LET flag "' XOR(flag,1)

See Also

ANDO Function, NOTO Function, ORO Function

Tlie PPL Dndopment Kil

PPL Reference

YEAR() Function

Function
Extracts the year from a specified date.

Syntax
YEAR(dexp)

dexp Any date expression.

Return Type a Value

Chapter7

INTEGER Returns the year from the specified date expression (dexp). Valid return
values are from 1900 to 2079.

Remarks
This function allows you to extract a particular piece of information about a DA TE value. in
this case the year of the date.

Examples

PRINTLN "This year is: ",YUR.(Da.'1'B())

See Also
DA TEO Function, DA YO Function, DOWO Function, MONTHO Function

Th• PPL JJ,v,l,,p,Mnt Kit 351

Chapter7 PPL Reference

YESCHAR() Function

352

Function
Get the yes response character for the current language.

Syntax
YESCHAR()

No arguments are required

Return Type & Value

STRING Returns the yes character for the current language.

Remarks
Suppon for foreign language yes/no responses can be easily added by using this function to
determine what an affinnative response should be instead of hard.coding the english "Y"
character.

Examples

STRING ans
LET ans = TIISCJIAJl(I
INPUTSTR "Run prograJJ. now" ,ans, @XOE, 1, "" ,AUTO+YESNO
IF I ans = NOCHAR (J) END

See Also

NOCHARO Function, YESNO Conltant

The PPL Development Kit

PPL Reference Chapter7

YESNO Constant

Function
Set the international yes/no response flag in an INPUTSTR or PROMPTSTR statement.

Value
16384 - 100000000000000b - 40000o - 4000h

Remarks
The INPUTSTR and PROMPTSTR statements have the ability to allow a yes/no response to
be entered in addition to any valid characters passed to the statement. The extra characters
allowed are YIN (or whatever characters were defined for the current language; spanish would
use SIN. french would use O/N, etc). Note that you do not need to pass any valid characters to
use this flag; regardless of the other legal characters the international Y /N characters will be
allowed.

Examples

STRING ans
LET ans = NOCHAR (l
INPUTSTR "Run program now" ,ans,@X0E, l, "" ,AUTO+YBSIJO
IF (ans= NOCHAR{l) END

See Also
INPUTSTR Stalement, NOCHARO Function, PROMPTSTR Statement, YESCHARQ
Function

The PPL Development Kit 353

Chapter7 PPL Reference

354 The PPL Development Kit

Index
CALLNUM(), 74 ONLOCAL(), 211

A CARRIER(), 75 Constant List, 55
CCTYPE(), 76 Constants, 49

ABORT(), 57 CDCHKOFF, 77 CPU Access
ABS(), 58 CDCHKON, 78 DOINTR, 107
ADJTIME, 59 CDON(), 79 MKADDR(), 196
AND(),60 CHAT, 80 PEEKB(), 223
ANSION(),61 CHR(),81 PEEKDW(), 224
ANSIPOS,62 CLOSECAP, 82 PEEKW(), 225
Application CLREOL, 83 POKEB,226

Installation, 12 CLS,84 POKEDW, 227
Testing, 14 Code Statements, 48 POKEW, 228

ASC(), 63 COLOR, 85 REGAH(),245
Assignment Color Control REGAL(),245

LET, 178 COLOR, 85 REGAX(),245
AUTO,64 CURCOLOR(), 88 REGBH(),245

DEFCOLOR, 97 REGBL(), 245
B DEFCOLOR(), 98 REGBX(),245

Commands, 12, 29 REGCF(), 245
B2W(),65 Comments,47 REGCH(), 245
BACKUP,66

Compiler REGCL(), 245
Basics, 47

Errors, 20 REGCX(),245
BELL,67

Exit Codes, 23 REGDH(),245
BLT,68

Warnings, 19 REGDI(), 245
BOOLEAN,69

Compiling Source Code, II, I 8 REGDL(),245
Branching Conference REGDS(),245

ELSE, 156
CONFFLAG, 86 REGDX(),245

ELSEIF, 156
CONFUNFLAG, 87 REGES(), 245

ENDIF, 156
CURCONF(), 89 REGF(),245

ENDWHILE, 345
F_EXP, 134 REGSl(),245

FOR, 128 F_MW, 135 VARADDR, 339
GOSUB, 146 F_REG, 136 VAROFF, 340
GOTO, 147

F_SEL, 137 VARSEG, 341
IF, 156 F_SYS, 138 Creating Source Code. 11
NEXT, 128 U _ INCONF(), 3 I 2 Credit Cards
RETURN,251 CONFFLAG, 86 CCTYPE(). 76
WHILE, 345 CONFUNFLAG, 87 FMTCC(), 125

BROADCAST, 70 Connection Infonnation VALCC(), 336
BYE, 71 CALLID(), 73 CURCOLOR(), 88

CALLNUM(), 74 CURCONF(), 89
C CARRIER(), 75 CURSEC(),90

LOGGEDON(), I 82 Cursor CALL, 72
MODEM(), 198 ANSIPOS,62 CALLID(), 73

Index
BACKUP,66 BELL,67 FAPPEND, 116
FORWARD, 129 LF AFTER, 179 FCLOSE, 118
GETX, 143 LFBEFORE, 180 FCREATE, 119
GETY, 144 LOGIT, 183 FERR(), 120

LOGITLEFT, 184 FGET, 121

D NEWLINE, 204 FILEINF(), 123
DOINTR, 107 FOPEN, 127

DATE, 91 DOW(), I08 FPUT, 130
Date DTROFF, I09 FPUTLN, 130

DATE(), 92 DTRON, 110 FPUTPAD, 131
DAY(), 93 FREWIND, 133
DOW(), 108 E READLINE(), 244
MKDATE(), 197 RENAME,247
MONTH(),200 ECHODOTS, 111 FILEINF(), 123
VALDATE(), 337 ELSE, 156 FMTCC(), 125
YEAR(),351 ELSEIF, 156 FNS, 126

DATE(), 92 END, 112 FOPEN, 127
DAY(), 93 ENDIF, 156 FOR, 128
DBGLEVEL, 94 ENDWHILE, 345 FORWARD, 129
DBGLEVEL(), 95 ERASELINE, 113 FPUT, 130
Debugging Errors, 20 FPUTLN, 130

DBGLEVEL, 94 EXIST(), 114 FPUTPAD, 131
DBGLEVEL(), 95 Exit Codes, 23 FRESHLINE, 132
LOG, 181 Expressions, 49 FREWIND, 133

DEC, 96 Function List, 55
DEFCOLOR, 97 F Functions, 50
DEFCOLOR(), 98

F_EXP, 134 DEFS, 99 G
DELAY, 100 F_MW, 135

DELETE, IOI F_REG, 136 GETENV(), 139
DELUSER, 102 F_SEL, 137 GETTOKEN, 140
Developing PPL Applications, 11 F SYS, 138 GETTOKEN(), 141
DIR, 103 FALSE, 115 GETUSER, 142
DISPFILE, 104 FAPPEND, 116 GETX(), 143
DISPFILE Flags FCL, 117 GETY(), 144

GRAPH, 149 FCLOSE, 118 GOODBYE, 145
LANG, 174 FCREA TE, 119 GOSUB, 146
SEC, 258 FERR(), 120 GOTO, 147

Display Files, 13, 39 FGET, 121 GRAFMODE(), 148
Display Menus, 14, 42 FIELDLEN, 122 GRAPH, 149
DISPSTR, I 05 File Graphics
DISPTEXT, I06 DELETE, IOI ANSION(),61
DISPTEXT Flags EXIST(), 114 GRAFMODE(), 148

Index
GUIDE, ISO Input Masks KINKEY(), 173

MASK_ ALNUM(), 187
H MASK_ ALPHA(), 187 L
HANGUP, 151

MASK_ASCII(), 187
MASK_FILE(), 187 LANG, 174

Hello, World!, 27 MASK_NUM(), 187 LANGEXT(), 175
HELPPA TH(), I 52 MASK_PATH(), 187 LEFT(), 176
HlGHASCII, 153 MASK_PWD(), 187 LEN(), 177
HOUR(), 154 INPUTCC, 161 LET, 178

INPUTDATE, 161 LF AFTER, 179

INPUTINT, 161 LFBEFORE, 180

12S(), 155
INPUTMONEY, 161 LOG, 181

INPUTSTR, 163 LOGGEDON(), 182
IF, 156

INPUTTEXT, 165 LOGIT, 183
INC, 158

INPUTTIME, 161 LOGITLEFT, 184
INKEY(), 159

INPUTYN, 161 Logon Language Prompt, 37
INPUT, 160

Installing PPLC, 7 LOWER(), 185
Input

Installing Your Application, 12 LTRIM(), 186
INPUT, 160
INPUTCC, 161

INSTR(), 166
M INTEGER, 167

INPUTDATE, 161 Interactive Welcome Screens, 39
INPUTINT, 161 Internationalization MASK_ALNUM(), 187
INPUTMONEY, 161

NOCHAR(), 208 MASK_ALPHA(), 187
INPUTSTR, 163

YESCHAR(), 352
MASK_ASCII(), 187

INPUTTEXT, 165 Introduction to PPL, 3 MASK_FILE(), 187
INPUTTIME, 161 MASK_NUM(), 187
INPUTYN, 161 J MASK_PATH(), 187
PROMPT,234 MASK_PWD(), 187

Input Flags JOIN, 168 MAXNODE(), 188
AUTO,64 Menus, 14
ECHODOTS, 111 K MESSAGE, 189
ERASELINE, 113 MGETBYTE(), 190
FIELDLEN, 122 KBDCHKOFF, 169 MID(), 191
GUIDE, ISO KBDCHKON,170 MIN(), 192
HIGHASCII, I 53 KBDFILE, 171 MINKEY(), 193
LFAFTER, 179 KBDSTUFF, 172 MINLEFT(), 194
LFBEFORE, 180 Keyboard MINON(), 195
NEWLINE, 204 INKEY(), 159 Miscellaneous Constants
NOCLEAR, 209 KBDFILE, 171 DEFS, 99
STACKED, 269 KBDSTUFF, I 72 FALSE, 115
UPCASE,291 KINKEY(), 173 TRUE,289
WORDWRAP, 347 MGETBYTE(). 190 MKADDR(), 196
YESNO, 353 MINKEY(), 193 MKDA TE(), 197

Index
Modem

CDON(), 79
DTROFF, 109
DTRON, 110
SENDMODEM, 260
WA ITFOR, 344

MODEM(), 198
MONEY, 199
MONTH(),200
MORE,201
MPRINT,202
MPRINTLN, 202

N
NC,203
NEWLINE, 204, 205
NEWLINES, 206
NEWPWD,207
NEXT, 128
NOCHAR(), 208
NOCLEAR, 209
Node

RDUNET,242
UN_CITY(), 290
UN_NAME(), 290
UN_ OPER(), 290
UN_STAT(), 290
WRUNET,348

Node Specific Display Files, 39
NOT(), 210
Numerical

ABS(), 58
AND(),60
B2W(),65
DEC, 96
INC, 158
NOT(),210
OR(),214
RANDOM(), 241
XOR(),350

0
O_RD,215
O_RW,216
O_WR,217
ONLOCAL(), 211
Open Flags

O_RD,215
O_RW,216
0 WR,217

OPENCAP, 212
Operator Page, 30
Operators, 51

Precedence, 52
OPTEXT,213
OR(), 214

p

PAGEOFF, 218
PAGEON, 219
PAGESTAT(), 220
Password Expiration Warning, 36
PCBDA T(), 221
PCBNODE(), 222
PCBOARD.DAT lnfonnation

HELPPATH(), 152
PCBDA T(), 221
PCBNODE(), 222
SLPA TH(), 265
SYSOPSEC(), 276
TEMPPATH(), 281

PCBoard Commands
BLT, 68
BROADCAST, 70
BYE, 71
DIR, 103
GOODBYE, 145
JOIN, 168
MESSAGE, 189
QUEST, 240

PCBTEXT Display Prompts, 13, 36

PEEKB(),223
PEEKDW(), 224
PEEKW(),225
POKEB,226
POKEDW,227
POKEW,228
POP,229
PPEFiles

Commands, 12
Display Files, 13
Display Menus, 14
PCBTEXT Display
Prompts, 13
Script Questionnaires, 13

PPE Information
PPENAME(), 23 I
PPEPA TH(), 232

PPENAME(), 231
PPEPATH(), 232
PPL

PPLC

Commands, 29
Developing Applications,
II
Display Files, 39
Display Menus, 42
Introduction, 3
PCBTEXT Display
Prompts, 36
Reference, 55
Script Questionnaires, 34
Structure, 47
Tutorial, 27

Errors, 20
Exit Codes, 23
Installing, 7
Running, 17
Using, 17
Warnings, 19

PRINT,233
PRINTLN, 233
Process

CALL, 72

Index
END, 112
RDUSYS, 243
SHELL,261
STOP,271
WRUSYS, 349

PROMPTSTR, 234
PSA(), 236
PUSH,237
PUTUSER, 239

Q
QUEST,240

R
RANDOM(), 241
RDUNET, 242
RDUSYS, 243
READLINE(), 244
REGAH(),245
REGAL(),245
REGAX(),245
REGBH(),245
REGBL(),245
REGBX(),245
REGCF(),245
REGCH(),245
REGCL(),245
REGCX(),245
REGDH(), 245
REGDl(),245
REGDL(), 245
REGDS(),245
REGDX(),245
REGES(),245
REGF(),245
REGSl(),245
RENAME,247
REPLACE(), 248
RESETDISP, 249
RESTSCRN, 250
RETURN,251

RIGHT(), 252
RTRIM(),253
Running PPLC, 17

s
S DB,277
S-DN,278
S-DR,279
S-DW, 280
S21(), 254
SA VESCRN, 255
Screen

ABORT(), 57
CLOSECAP, 82
CLREOL, 83
CLS, 84
DISPFILE, I 04
DISPSTR, I 05
DISPTEXT, 106
FCL, 117
FNS, 126
FRESHLINE, 132
MORE,201
MPRINT,202
MPRINTLN, 202
NC,203
NEWLINE, 205
NEWLINES, 206
OPENCAP, 212
OPTEXT,213
PRINT, 233
PRINTLN, 233
RESETDISP, 249
RESTSCRN, 250
SA VESCRN, 255
SHOWOFF, 262
SHOWON,263
SHOWSTA T(), 264
SPRINT, 268
SPRINTLN, 268
STARTDISP, 270
WAIT, 343

Script Questionnaires, 13, 34
SCRTEXT(), 256
SEC, 258
SEC(), 259
SENDMODEM, 260
Share Flags

S DB, 277
S-DN, 278
S-DR,279

S=DW, 280
SHELL,261
SHOWOFF, 262
SHOWON,263
SHOWSTAT(), 264
SLPA TH(), 265
SOUND,266
Source Code

Compiling, 11, 18
Creating, 11
Specifying the File to
PPLC, 17

SPACE(),267
Specifying the Source Code File. 17
SPRINT, 268
SPRINTLN, 268
Stack

POP,229
PUSH, 237

STACKED, 269
Stan, 33
STARTDISP, 270
Statement List, 56
Statements

Code, 48
Variable Declaration. 47

STOP,271
STRING, 272
String

ASC(), 63
CHR(),81
12S(), 155
INSTR(), 166
LEFT(), 176

Index
LEN(), 177 Time TIME,282
LOWER(), 185 ADJTIME, 59
LTRIM(), 186 DELAY, 100 u
MID(), 191 HOUR(), 154
REPLACE(), 248 MIN(), 192 U _ ADDR(), 293

RIGHT(), 252 SEC(), 259 U_ALIAS, 294

RTRIM(),253 TIME(), 283 U_BDL(),295

S21(), 254 TIMEAP(), 284 U_BDLDAY(), 296

SCRTEXT(), 256 VALTIME(), 338 U _ BDPHONE, 297

SPACE(),267 TIME(), 283 U_BUL(),298

STRING(), 273 TIMEAP(), 284 U_CITY, 299

STRIP(), 274 TOKCOUNT(), 285 U_CLS, 300

STRIPATX(), 275 TOKENIZE, 286 U_CMNTI, 301

TRIM(),288 Tokens U _ CMNT2, 302

UPPER(),292 GETTOKEN, 140 U_DEF79, 303

STRING(), 273 GETTOKEN(), 141 U_EXPDATE, 304

STRIP(), 274 TOKCOUNT(), 285 U_EXPERT, 305

STRIPATX(), 275 TOKENIZE, 286 U _ EXPSEC, 306

Structure, 47 TOKENSTR(), 287 U_FDL(), 307

Sub-Expressions, 50 TOKENSTR(), 287 U_FSE, 308

SysOpChat TRIM(), 288 U_FSEP, 309

CHAT, 80 TRUE,289 U_FUL(), 310

PAGEOFF, 218 Tutorial, 27 U_HVPHONE, 3 I I

PAGEON, 219 Display Menus, 42 U_INCONF(), 312

PAGESTAT(), 220 Hello, World!, 27 U_LDATE(), 313

SYSOPSEC(), 276 Interactive Welcome U_LDIR(), 314

System Screens, 39 U_LOGONS(), 315

CDCHKOFF, 77 Logon Language Prompt, U_LONGHDR, 316

CDCHKON, 78 37 U_LTIME(), 317

GENENV(), 139 Node Specific Display U_MSGRD(), 318

HANGUP, 151 Files, 39 U_MSGWR(), 319

KBDCHKOFF, 169 Operator Page, 30 U_NAME(), 320
KBDCHKON, 170 Password Expiration U_NOTES(), 321

MAXNODE(), I 88 Warning, 36 U_pAGELEN, 322

PSA(), 236 Script Questionnaire, 34 U_PWD,323

SOUND,266 Start, 33 U _PWDEXP, 324

VER(), 342 Type List, 56 U _PWDHIST(), 325

Types U_PWDLC(), 326

T BOOLEAN,69 U_PWDTC(), 327

TEMPPATH(), 281
DATE, 91 U_RECNUM(), 328

INTEGER, 167 U _ SCROLL, 329
Testing Your Application, 14 MONEY, 199 U_SEC, 330
TIME, 282 STRING,272 U_STAT(), 331

Index
U _ TIMEON(), 333
U_TRANS, 334
U_VER, 335
UN_CITY(), 290
UN_NAME(), 290
UN_ OPER(), 290
UN_STAT(), 290
UPCASE, 291
UPPER(),292
User lnfonnation

CURSEC(),90
DELUSER, I 02
GETUSER, 142
LANGEXT(), 175
MINLEFT(), 194
MINON(), 195
NEWPWD,207
PUTUSER, 239
U _ ADDR(), 293
U _ ALIAS, 294
U_BDL(),295
U _ BOLDA Y(), 296
U _BDPHONE, 297
U_BUL(),298
U_ClTY,299
U_CLS, 300
U_CMNTI, 301
U_CMNT2, 302
U_DEF79, 303
U_EXPDATE, 304
U EXPERT, 305
U = EXPSEC, 306
U_FDL(), 307
U_FSE,308
U_FSEP,309
U FUL(),310
U - HVPHONE, 3 I 1
U-INCONF(),312
U=LDATE(),313
U LDIR(), 314
U - LOGONS(), 3 I 5
U=LONGHDR,316
U_LTIME(),317

U_MSGRD(), 318
U_MSGWR(), 319
U_NAME(), 320
U_NOTES(), 321
U PAGELEN, 322
U-PWD, 323
U=PWDEXP, 324
U _PWDHlST(), 325
U_PWDLC(), 326
U_PWDTC(), 327
U _ RECNUM(), 328
U _ SCROLL, 329
U_SEC,330
U_STAT(), 331
U_TIMEON(), 333
U _ TRANS, 334
U_VER, 335

Using PPLC, 17

V
VALCC(),336
VALDA TE(), 337
VALTlME(), 338
VARADDR, 339
Variable Declaration Statements, 47
Variable List, 56
VAROFF, 340
VARSEG,341
VER(),342

w
WAIT, 343
WAlTFOR,344
Warnings, 19
WHILE, 345
WORDWRAP, 347
WRUNET,348
WRUSYS,349

X
XOR(),350

y

YEAR(),351
YESCHAR(), 352
YESNO, 353

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370

